Магнитные диски компьютера служат для длительного хранения информации (она не стирается при выключении ЭВМ). При этом в процессе работы данные могут удаляться, а другие записываться.

Выделяют жесткие и гибкие магнитные диски. Однако гибкие диски в настоящее время используются уже очень редко. Гибкие диски были особенно популярны в 80-90-х годах прошлого столетия.

Гибкие диски (дискеты), называемые иногда флоппи-дисками (Floppy Disk), представляют собой магнитные диски, заключенные в квадратные пластиковые кассеты размером 5,25 дюйма (133 мм) или 3,5 дюйма (89 мм). Гибкие диски позволяют переносить документы и программы с одного компьютера на другой, хранить информацию, делать архивные копии информации, содержащейся на жестком диске.

Информация на магнитный диск записывается и считывается магнитными головками вдоль концентрических дорожек. При записи или чтении информации магнитный диск вращается вокруг своей оси, а головка с помощью специального механизма подводится к нужной дорожке.

Дискеты размером 3,5 дюйма имеют емкость 1,44 Мбайт. Данный вид дискет наиболее распространен в настоящее время.

В отличие от гибких дисков жесткий диск позволяет хранить большие объемы информации. Емкость жестких дисков современных компьютеров может составлять терабайты.

Первый жесткий диск был создан фирмой IBM в 1973 году. Он позволял хранить до 16 Мбайт информации. Поскольку этот диск имел 30 цилиндров, разбитых на 30 секторов, то он обозначался как 30/30. По аналогии с автоматическими винтовками, имеющими калибр 30/30, этот диск получил прозвище "винчестер".

Жесткий диск представляет собой герметичную железную коробку, внутри которой находится один или несколько магнитных дисков вместе с блоком головок чтения/записи и электродвигателем. При включении компьютера электродвигатель раскручивает магнитный диск до высокой скорости (несколько тысяч оборотов в минуту) и диск продолжает вращаться все время, пока компьютер включен. Над диском "парят" специальные магнитные головки, которые записывают и считывают информацию так же, как и на гибких дисках. Головки парят над диском вследствие его высокой скорости вращения. Если бы головки касались диска, то из-за силы трения диск быстро вышел бы из строя.

При работе с магнитными дисками используются следующие понятия.

Дорожка – концентрическая окружность на магнитном диске, которая является основой для записи информации.

Цилиндр – это совокупность магнитных дорожек, расположенных друг над другом на всех рабочих поверхностях дисков винчестера.

Сектор – участок магнитной дорожки, который является одной из основных единиц записи информации. Каждый сектор имеет свой собственный номер.



Кластер - минимальный элемент магнитного диска, которым оперирует операционная система при работе с дисками. Каждый кластер состоит из нескольких секторов.

Любой магнитный диск имеет логическую структуру, которая включает в себя следующие элементы:

  • загрузочный сектор;
  • таблицы размещения файлов;
  • область данных.

Загрузочный сектор (Boot Record) занимает сектор с номером 0. В нем содержится небольшая программа IPL2 (Initial Program Loading 2), с помощью которой компьютер определяет возможность загрузить операционную систему с данного диска.

Особенностью винчестера является наличие помимо загрузочного сектора еще одной области - главного загрузочного сектора (Master Boot Record). Дело в том, что единый жесткий диск может быть разбит на несколько логических дисков. Для главного загрузочного сектора на жестком диске всегда выделяется физический сектор 1. Этот сектор содержит программу IPL1 (Initial Program Loading 1), которая при своем выполнении определяет загрузочный диск.

Таблица размещения файлов используется для хранения сведений о размещении файлов на диске. Для магнитных дисков обычно используются две копии таблиц, которые следует одна за другой, и содержимое их полностью совпадает. Это делается на тот случай, если на диске произошли какие либо сбои, то диск всегда можно "отремонтировать", используя вторую копию таблицы. Если будут испорчены обе копии, то вся информация на диске будет потеряна.

Область данных (Data Area) занимает основную часть дискового пространства и служит непосредственно для хранения данных.

Магнитные диски (МД) относятся к магнитным носителям информации. В качестве запоминающей среды у них используются магнитные материалы со специальными свойствами (с прямоугольной петлей гистерезиса), позволяющими фиксировать два магнитных состояния - два направления намагниченности. Каждому из этих состояний ставятся в соответствие двоичные цифры: 0 и 1. Накопители на МД (НМД) являются наиболее распространенными внешними запоминающими устройствами в ПК. Диски бывают жесткими и гибкими, сменными и встроенными в ПК. Устройство для чтения и записи информации на магнитном диске называется дисководом.

Все диски: и магнитные, и оптические характеризуются своим диаметром или, иначе, форм-фактором. Наибольшее распространение получили магнитные диски с форм-фактором 3,5" (89 мм) и оптические диски с форм-фактором 5,25" (133 мм).

Информация на МД записывается и считывается магнитными головками вдоль концентрических окружностей - дорожек (tracks). Количество дорожек на МД и их информационная емкость зависят от типа МД, конструкции накопителя на МД, качества магнитных головок и магнитного покрытия.

Каждая дорожка МД разбита на сектора. В одном секторе дорожки может быть помещено 128, 256, 512 или 1024 байт, но обычно 512 байт данных. Обмен данными между НМД и оперативной памятью осуществляется последовательно целым числом секторов. Кластер - это минимальная единица размещения информации на диске, состоящая из одного или нескольких смежных секторов дорожки.

При записи и чтении информации МД вращается вокруг своей оси, а механизм управления магнитной головкой подводит ее к дорожке, выбранной для записи или чтения информации.

Данные на дисках хранятся в файлах, которые обычно отождествляют с участком (областью, полем) памяти на этих носителях информации.

Файл - это именованная область внешней памяти, выделенная для хранения массива данный.

Поле памяти создаваемому файлу выделяется кратным определенному количеству кластеров. Кластеры, выделяемые одному файлу, могут находиться в любом свободном месте дисковой памяти и необязательно являются смежными. Файлы, хранящиеся в разбросанных по диску кластерах, называются фрагментированными.

Для пакетов магнитных дисков (диски установлены на одной оси) и для двухсторонних дисков вводится понятие "цилиндр". Цилиндром называется совокупность дорожек МД, находящихся на одинаковом расстоянии от его центра.

4.2. Накопители на гибких магнитных дисках

На гибком магнитном диске (дискете) магнитный слой наносится на гибкую основу. Используемые в современных ПК ГМД имеют форм-фактор 3,5", они помещаются в жесткую пластмассовую кассету для защиты от пыли и механических повреждений. Режим запрета записи на этих дискетах устанавливается специальным переключателем, расположенным в левом нижнем углу дискеты.

Каждую новую дискету в начале работы с ней следует отформатировать. Форматирование дискеты - это создание структуры записи информации на ее поверхности: разметка дорожек, секторов, записи маркеров и другой служебной информации.

Основные правила обращения с дискетой:

    не сгибать дискету;

    не прикасаться руками к магнитному покрытию диска;

    не подвергать дискету воздействию магнитных полей;

    нужно хранить дискету при положительной температуре;

    нужно извлекать дискету перед выключением ПК;

    вставлять дискету в дисковод и вынимать ее из него только тогда, когда не горит сигнальная лампочка включения дисковода.

Запись информации на магнитные носители происходит по концентрическим дорожкам. Дорожки разбиты на секторы (512 байт для дискеты). Обмен данными между НМД и оперативной памятью осуществляется последовательно секторами (кластерами).

Поверхность жесткого диска рассматривается как трехмерная матрица, измерениями которой являются номера поверхности, номер цилиндра (номер дорожки) и номер сектора. Под цилиндром понимается совокупность всех дорожек, принадлежащих разным поверхностям и находящихся на равном удалении от оси вращения. Данные о том, в каком месте диска записан тот или иной файл, хранятся в системной области диска.

На каждом диске можно выделить две области: системную и данных .

I. Системная область диска состоит из трех участков:

1. Главная загрузочная запись (MBR – Master Boot Record), самый первый сектор диска, в котором описывается структура диска: какой раздел (логический диск) является системным, сколько разделов на этом диске, какого они объема;

2. Таблица размещения файлов (FAT – File Allocation Table). Количество ячеек FAT соответствует количеству кластеров на диске (они нумеруются от 2 до N+1, где N – полное число кластеров на диске). Значениями ячеек является шестнадцатеричный код, по которому можно судить состояние кластера: либо он дефектный (код FFF1-FFF7), либо он свободен (0000), либо используется файлом (код соответствует номеру кластера, где продолжается текущий файл 0002-FFF0), либо содержит последнюю часть файла (FFF8-FFFF).

3. Корневой каталог диска – список файлов и подкаталогов с их параметрами.

II. В области данных расположены подкаталоги и сами данные. На жестком диске системная область создается на каждом логическом диске.

На жестком диске кластер является минимально адресуемым элементом. Размер кластера, в отличие от размера сектора, строго не фиксирован (от 512 байт до 64 Кбайт). Обычно он зависит от типа используемой файловой системы и от емкости диска. Кластеры нумеруются в линейной последовательности (от первого кластера нулевой дорожки до последнего кластера последней дорожки).

Физически, кластеры, выделяемые одному файлу, могут находиться в любом свободном месте дисковой памяти и необязательно являются смежными. Файлы, хранящиеся в разбросанных по диску кластерах, называются фрагментированными.

Например, Файл_1 может занимать кластеры 34, 35 и 47, 48, а Файл_2 - кластеры 36 и 49.

Например, для двух рассмотренных выше файлов табли­ца FAT с 1-й по 54-ю ячейку принимает следующий вид:

Цепочка размещения для файла Файл_1 выглядит сле­дующим образом: в начальной 34-й ячейке FAT хранится адрес следующего кластера (35), соответственно, в следую­щей 35-й ячейке хранится 47, в 47-й - 48, в 48-й - знак конца файла (К).


Операционные системы MS-DOS, OS/2, Windows 95 и другие используют файловую систему на основе таблиц размещения файлов (FAT-таблицы File Allocation Table ), состоящих из 16-разрядных полей. Такая файловая система называется FAT16. Она позволяет разместить в FAT-таблицах не более 65 536 записей (2 16) о местоположении единиц хранения данных. Для дисков объемом от 1 до 2 Гбайт длина кластера составляет 32 Кбайт (64 сектора). Это не вполне рациональный расход рабочего пространства, поскольку любой файл (даже очень маленький) полностью оккупирует весь кластер, которому соответствует только одна адресная запись в таблице размещения файлов. Даже если файл достаточно велик и располагается в нескольких кластерах, все равно в его конце образуется некий остаток, нерационально расходующий целый кластер.

Начиная с Windows 98 операционные системы семейства Windows (Windows 98, Windows Me, Windows 2000, Windows XP) поддерживают более совершенную версию файловой системы на основе FAT-таблиц - FAT32 с 32-разрядными полями в таб­лице размещения файлов. Для дисков размером до 8 Гбайт эта система обеспечи­вает размер кластера 4 Кбайт (8 секторов).

Операционные системы Windows NT и Windows ХР способны поддерживать совер­шенно другую файловую систему - NTFS. В ней хранение файлов организовано иначе - служебная информация хранится в Главной таблице файлов (MFT). В сис­теме NTFS размер кластера не зависит от размера диска, и, потенциально, для очень больших дисков эта система должна работать эффективнее, чем FAT32. Однако с учетом типичных характеристик современных компьютеров можно говорить о том, что в настоящее время эффективность FAT32 и NTFS примерно одинакова.

Коммуникация, связь, радиоэлектроника и цифровые приборы

Домены магнитных материалов используемых в продольной записи располагаются параллельно поверхности носителя. Этот эффект и используется при записи цифровых данных магнитным полем головки изменяющимся в соответствии с сигналом информации. Попытки увеличить поверхностную плотность записи путем уменьшения размеров частиц будут увеличивать отношение размера зоны неопределенности к размеру полезной зоны не в пользу последней и в конце концов неизбежно приведут к так называемому суперпарамагнитному эффекту когда частицы перейдут в однодоменное...

Технологии записи на магнитные диски

Продольная запись

Первые образцы жестких дисков, появившиеся в 70-х годах ХХ века, использовали технологию продольной записи информации. Для этого поверхность диска, так же, как и поверхность магнитной ленты, покрывалась слоем двуокиси хрома CrO 2 или оксидом железа, обеспечивающим продольную намагниченность регистрирующего слоя. Коэрцитивная сила такого носителя H c = 28 кА/м.

Технология нанесения оксидного слоя довольно сложная. Сначала на поверхность быстро вращающегося алюминиевого диска методом напыления наносится суспензия из смеси порошка оксида железа и расплавленного полимера. За счет действия центробежных сил она равномерно распределяется по поверхности диска от его центра к внешнему краю. После полимеризации раствора поверхность шлифуется, и на нее наносится еще один слой чистого полимера, обладающего достаточной прочностью и низким коэффициентом трения. Затем диск окончательно полируется. Диски накопителей такого типа имеют коричневый или желтый цвет.

Как известно, магнитные материалы имеют доменную структуру, т.е. состоят их отдельных микроскопических областей - доменов , внутри которых магнитные моменты всех атомов направлены в одну сторону. В результате каждый такой домен имеет достаточно большой суммарный магнитный момент. Домены магнитных материалов, используемых в продольной записи, располагаются параллельно поверхности носителя. Если на магнитный материал не воздействует внешнее магнитное поле, ориентация магнитных моментов отдельных доменов имеет хаотичный характер и любое их направление равновероятно. Если же такой материал поместить во внешнее магнитное поле, то магнитные моменты доменов будут стремиться сориентироваться в направлении, совпадающем с направлением внешнего магнитного поля. Этот эффект и используется при записи цифровых данных магнитным полем головки, изменяющимся в соответствии с сигналом информации.

Минимальным элементом (ячейкой) памяти магнитного регистрирующего слоя, способным хранить один бит информации, является не отдельный домен, а частица (область), состоящая из нескольких десятков доменов (70-100). Если направление суммарного магнитного момента такой частицы совпадает с направлением движения магнитной головки, то такое ее состояние можно сопоставить логическому «0» данных, если направления противоположны, – логической «1».

Однако если соседние области имеют противоположное направление магнитных моментов, то домены, расположенные на границе между ними и соприкасающиеся одноименными полюсами, будут отталкиваться друг от друга и в конце концов изменят направления своих магнитных моментов каким-то непредсказуемым образом с тем чтобы принять энергетически более устойчивое положение. В результате на границе двух областей образуется зона неопределенности, уменьшающая размеры области, хранящей бит записанной информации и, соответственно, уровень полезного сигнала при считывании (рис. 5.6). Уровень шумов при этом, разумеется, увеличивается.

Попытки увеличить поверхностную плотность записи путем уменьшения размеров частиц будут увеличивать отношение размера зоны неопределенности к размеру полезной зоны не в пользу последней и, в конце концов, неизбежно приведут к так называемому суперпарамагнитному эффекту , когда частицы перейдут в однодоменное состояние и будут уже неспособны фиксировать записываемую информацию, поскольку соседние домены с противоположно направленными магнитными моментами будут изменять свою ориентацию сразу же после удаления магнитного поля записывающей головки. Материал регистрирующего слоя превратится в равномерно намагниченный по всему объему.

Таким образом, из-за наличия суперпарамагнетизма технология продольной записи, достигнув к середине первого десятилетия XXI века величины плотности записи в 120 Гбит на дюйм 2 , практически исчерпала свои возможности и уже не в состоянии обеспечивать существенное повышение емкости накопителей на жестких дисках. Это заставило разработчиков обратиться к другим технологиям, свободным от этого недостатка.

Перпендикулярная запись

Возможность перпендикулярной записи основана на том, что в тонких пленках, содержащих кобальт, платину и некоторые другие вещества, атомы этих веществ стремятся ориентироваться таким образом, что их магнитные оси оказываются перпендикулярными поверхности носителя. Домены, сформированные из таких атомов, также располагаются перпендикулярно поверхности носителя.

Сигнал в считывающей магнитной головке формируется только тогда, когда она пересекает силовые линии магнитного поля домена, т.е. в том месте, где эти силовые линии перпендикулярны поверхности носителя. У домена, расположенного параллельно поверхности носителя, силовые линии магнитного поля перпендикулярны поверхности только у его концов, там, где они выходят на поверхность (рис. 5.7,а). Когда головка перемещается параллельно домену и, следовательно, параллельно его силовым линиям сигнал в ней отсутствует. Уменьшать длину домена, стремясь повысить плотность записи, можно только до определенных пределов - пока не начнет сказываться суперпарамагнитный эффект. Если же домены располагаются перпендикулярно поверхности носителя, то силовые линии их магнитных полей всегда будут перпендикулярны поверхности и будут содержать в себе информацию (рис. 5.7,б). «Холостых» пробегов, обусловленных длиной домена, здесь уже не будет. Как не будет и суперпарамагнетизма, поскольку домены с противоположной намагниченностью не будут отталкиваться друг от друга. Очевидно, что плотность записи на носителе с перпендикулярной намагниченностью можно получить более высокую.

Диск, предназначенный для перпендикулярной записи, требует особой технологии изготовления. Основа пластины тщательно полируется, а затем методом вакуумного напыления на ее поверхность наносится выравнивающий слой фосфата никеля NiP толщиной порядка 10 мкм, который, во-первых, уменьшает шероховатость поверхности, во-вторых, увеличивает адгезию к последующим слоям (рис. 5.8).

Далее наносится слой магнитомягкого материала, обеспечивающий возможность считывания данных с регистрирующего слоя, и сам регистрирующий слой из материала с перпендикулярной ориентацией магнитных доменов. В качестве регистрирующего слоя может использоваться кобальт (Со), платина (Pt ), палладий (Pd ), их сплавы друг с другом и с хромом (Cr ), а также многослойные структуры, состоящие из тонких пленок этих металлов толщиной в несколько атомов.

Поверх регистрирующего слоя наносится защитная пленка из стеклокерамики, толщиной порядка сотых долей микрона.

Запись информации на регистрирующий слой с перпендикулярной намагниченностью имеет свои особенности. Для того чтобы обеспечить приемлемый уровень сигнала и обеспечить хорошее отношение сигнал/шум, силовые линии магнитного поля, формируемого головкой записи, должны, проходя через регистрирующий слой, вновь замыкаться на сердечник головки. Для этого и служит магнитомягкий подслой, расположенный ниже регистрирующего (рис. 5.9).

По предварительным прогнозам специалистов технология перпендикулярной записи позволит реализовать плотность записи до 500 Гбит/дюйм 2 . При этом емкость 3,5-дюймового накопителя составит 2 Тбайта, 2,5-дюймового - 640 Гбайт, 1-дюймового - 50 Гбайт. Однако это только предварительные прогнозы. Не исключено, что верхним пределом окажется величина в 1 Тбит/дюйм 2 и даже больше. Будущее покажет.

Перспективные технологии магнитной записи

Технология перпендикулярной записи в настоящее время находится в стадии активного развития и до предельных значений плотности записи здесь пока еще далеко. Однако этот момент когда-нибудь все-таки настанет. Может быть даже раньше, чем сейчас представляется. Поэтому исследования в направлении поиска новых высокоэффективных технологий магнитной записи ведутся уже сейчас.

Одной из таких технологий является термомагнитная запись HAMR (Heat Assisted Magnetic Recording) , т.е. запись с предварительным нагревом носителя. Этот метод предусматривает кратковременный (1 пикосекунда) нагрев участка носителя, на который производится запись, сфокусированным лучом лазера - так же, как в магнитооптической записи. Разница между технологиями проявляется в способе чтения информации с диска. В магнитооптических приводах информация считывается лучом лазера, работающего на меньшей, чем при записи, мощности, а при термомагнитной записи информация считывается магнитной головкой так же, как с обычного жесткого диска. Да и плотность записи здесь планируется получить гораздо более высокую, чем в магнитооптических форматах MD , CD - MO или DVD - MO - до 10 Тбит/дюйм 2 . Поэтому в качестве регистрирующей среды здесь необходимы иные материалы. Сейчас в качестве таких материалов рассматриваются различные соединения платины, кобальта, неодима, самария и некоторых других элементов: Fe 14 Nd 2 B, CoPt, FePt, Co 5 Sm и пр. Такие материалы очень дороги - как из-за дороговизны входящих в их состав редкоземельных элементов, так и из-за сложности и дороговизны технологического процесса по их получению и нанесению на поверхность основы предполагаемого носителя. Конструкция головки записи/считывания в технологии HAMR также предполагается совсем иная, чем в магнитооптической записи: лазер должен располагаться с той же стороны, что и магнитная головка, а не с противоположной, как в магнитооптических рекордерах (рис. 5.10). Нагрев предполагается производить до температуры порядка 100 градусов Цельсия, а не 180.

Еще одним перспективным направлением развития магнитной записи является использование в качестве регистрирующего слоя материалов, частицы в которых выстроены в четко структурированный доменный массив (Bit Patterned Media ). При такой структуре каждый бит информации будет хранится всего в одной ячейке-домене, а не в массиве из 70-100 доменов (рис. 5.11).

Такой материал можно либо создать искусственно с помощью фотолитографии (рис. 5.12), либо найти сплав с подходящей самоорганизующейся структурой.

Первый метод вряд ли получит развитие, поскольку для получения материала, допускающего плотность записи хотя бы 1 Тбит/дюйм 2 , размер одной частицы должен составить максимум 12,5 нм. Ни существующая, ни планируемая в ближайшие 10 лет технология литографии этого не обеспечивает. Хотя есть довольно хитроумные решения, позволяющие не сбрасывать со счетов данный подход.

Поиск самоорганизующихся магнитных материалов (SOMA - Self-Ordered Magnetic Array ) – весьма перспективное направление. Уже несколько лет специалисты компании Seagate указывают на особенности сплава FePt, выпариваемого в гексановом растворителе. Полученный материал имеет идеально ровную ячеистую структуру. Размер одной ячейки – 2,4 нм. Если учесть, что каждый домен обладает высокой стабильностью, можно говорить о допустимой плотности записи на уровне 40-50 Тбит/дюйм 2 ! Похоже, это и есть окончательный предел записи на магнитные носители .


S

Зоны неопределенности

Рис. 5.6. Зоны неопределенности, возникающие при продольной записи

Сигнал есть

Сигнала нет

Рис. 5.7. Носители с параллельной (а)

и перпендикулярной (б) намагниченностью

Подслой из магнитомягкого материала

Основа диска (Al)

Выравнивающий слой (NiP)

Регистрирующий слой с перпендикулярной намагниченностью

Защитный слой

Рис. 5.8. Структура жесткого диска с перпендикулярной

намагниченностью

Магнитотвердый регистрирующий слой

Магнитомягкий подслой

Рис. 5.9. Запись на материал с перпендикулярной

намагниченностью

Записывающий полюс

Возврат-ный полюс полюс

Рис. 5.10. Магнитооптическая головка HARM

Рис. 5.11. Микроструктура ВРМ: 1 - область, соответствующая одному биту информации при обычной записи; 2 - массив, границы которого совпадают с границами доменов; 3 - домен, который способен хранить один бит данных

Рис. 5.12. Регистрирующий слой, полученный с помощью фотолитографии


А также другие работы, которые могут Вас заинтересовать

21435. ПЕРЕМЕНА ЛИЦ В ОБЯЗАТЕЛЬСТВЕ 20.2 KB
Поэтому цессия всегда совершается уже воисполнение существующего обязательства В большинстве обязательств сторона имеет права и обязанности Уступка права является одновременно и переводом долга т. связано с переменой лиц а так ее не произойдет Пункт 5 письма: возможна если предмет обязательства делим Уступка права требования по возврату средств по кредитному договору: статья812 ГК: может давать только банк или другая кредитная организация т. по требованию кредитора исполняется обязательство Пассивная...
21436. ПРЕДМЕТ ИСПОЛНЕНИЯ ОБЯЗАТЕЛЬСТВА 21.06 KB
Особые требования предъявляются к денежным обязательствам Статья 317 ГК: они д. оплачено в рублях за исключением установленными ЦБ РФ Особо важно учитывать инфляционные процессы в тех случаях когда они направлены на содержание гражданина Статья 318 ГК: сумма выплачиваемая по ДО непосредственно на содержание гражданина возмещение вреда по договору пожизненного содержания индексируется по уровню инфляции в порядке и...
21437. ГРАЖДАНСКО-ПРАВОВАЯ ОТВЕТСТВЕННОСТЬ 22.54 KB
В результате совершенного правонарушения должны наступать такие отрицательные последствия на правонарушителя которые в дальнейшем способны предотвращать правонарушения; в качестве таких отрицательных последствий могут выступать либо лишения личного характера арест либо лишения имущественного характера конфискация неустойка штраф возмещение убытков ЮО это последствия совершенного правонарушения которое выражается в нежелательных для правонарушителя лишений личного...
21438. ТЕОРИЯ ПРИЧИННОЙ СВЯЗИ 16.29 KB
Частный интерес потерпевшего в ГП состоит не в том чтобы подвергнуть нарушителя лишениям личностного характера а чтобы восполнить потери которые он понес ГПО это всегда ответственность одного субъекта ГП перед другим субъектом ГП этим отличается от АПО Черта обусловлена тем что ГП регулирует оо в целях удовлетворения частных интересов участников этих отношений а частные интересы участников...
21439. ВИНА 20.36 KB
Вина имеет место тогда когда из поведения лица видно что это лицо либо желало совершить правонарушение либо не проявило ту степень заботливости и осмотрительности которое требовалось от него по характеру обязательства и условиям оборота для предотвращения правонарушения Иной подход к понятию вины: Вина никакого отношения к психическим процессам не имеет Суханов Ветрянский: вина должника имеет место тогда когда он не исполняет...
21440. Понятие об устойчивости решений дифференциальных уравнений 673 KB
Исследование на устойчивость некоторого решения Системы уравнений 1 может быть сведено к исследованию на устойчивость тривиального решения точки покоя расположенной в начале координат. расположенной в начале координат точки покоя системы уравнений. Сформулируем условия устойчивости в применении к точке покоя. Точка покоя системы 5 устойчива в смысле Ляпунова если для каждого  можно подобрать  такое что из...
21441. Замечания по поводу классификации точек покоя 340.5 KB
Следовательно при достаточно большом t точки траекторий начальные значения которых находятся в любой окрестности начала координат попадают в сколь угодно малую окрестность начала координат а при неограниченно приближаются к началу координат т. точки расположенные в начальный момент в окрестности начала координат при возрастании t покидают любую заданную окрестность начала координат т. Если существует дифференцируемая функция называемая функцией Ляпунова удовлетворяющая в окрестности начала координат условиям: 1 причем...
21442. Исследование на устойчивость по первому приближению 209.5 KB
Напомним что исследование на устойчивость точки покоя системы 1 эквивалентно исследованию на устойчивость некоторого решения системы дифференциальных уравнений 2 т. при правые части системы 1 обращаются в нуль:. Будем исследовать на устойчивость точку покоя линейной системы 5 называемой системой уравнений первого приближения для системы 4. система 1 стационарна в первом приближении то исследование на...
21443. Дифференциальные уравнения с частными производными первого порядка 170 KB
Линейным неоднородным уравнением или квазилинейным уравнением I порядка в частных производных называется уравнение вида: . 2 Это уравнение линейно относительно производных но может быть нелинейным относительно неизвестной функции Z. Если а коэффициенты Xi не зависят от z то уравнение 2 называется линейным однородным.

Для хранения программ и данных в персональных компьютерах используют различного рода накопители, общая емкость которых, как правило, в сотни раз превосходит емкость оперативной памяти. По отношению к компьютеру накопители могут быть внешними и встраиваемыми (внутренними). Внешние накопители имеют собственный корпус и источник питания, что экономит пространство внутри корпуса компьютера и уменьшает нагрузку на его блок питания. Встраиваемые накопители крепятся в специальных монтажных отсеках (drive bays), что позволяет создавать компактные системы, которые совмещают в системном блоке все необходимые устройства. Сам накопитель можно рассматривать как совокупность носителя и соответствующего привода. Различают накопители со сменными и несменными носителями.

Принцип работы магнитных запоминающих устройств основаны на способах хранения информации с использованием магнитных свойств материалов. Как правило, магнитные запоминающие устройства состоят из собственно устройств чтения/записи информации и магнитного носителя, на который, непосредственно, осуществляется запись и с которого считывается информация. Магнитные запоминающие устройства принято делить на виды в связи с исполнением, физико-техническими характеристиками носителя информации и т.д. Наиболее часто различают: дисковые устройства и ленточные устройства. Общая технология магнитных запоминающих устройств состоит в намагничивании переменным магнитным полем участков носителя и считывания информации, закодированной как области переменной намагниченности. Дисковые носители, как правило, намагничиваются вдоль концентрических полей – дорожек, расположенных по всей плоскости круглого носителя. Ленточные носители имеют продольно расположенные поля – дорожки. Запись производится, как правило, в цифровом коде. Намагничивание достигается за счет создания переменного магнитного поля при помощи головок чтения/записи. Головки представляют собой два или более магнитных управляемых контура с сердечниками, на обмотки которых подается переменное напряжение. Изменение полярности напряжения вызывает изменение направления линий магнитной индукции магнитного поля и, при намагничивании носителя, означает смену значения бита информации с 1 на 0 или с 0 на 1.

Для записи информации, как правило, используют различные методы кодирования, но все они предполагают использование в качестве информационного источника не само направление линий магнитной индукцииэлементарной намагниченной точки носителя, а изменение их направления в процессе продвижения по носителю вдоль концентрической дорожки с течением времени. Такой принцип требует жесткой синхронизации потока бит, что и достигается методами кодирования.

Дисковые устройства делят на гибкие (Floppy Disk) и жесткие (Hard Disk) накопители и носители. Основным свойством дисковых магнитных устройств является запись информации на носитель на концентрические замкнутые дорожки с использованием физического и логического цифрового кодирования информации. Плоский дисковый носитель вращается в процессе чтения/записи, чем и обеспечивается обслуживание всей концентрической дорожки, чтение и запись осуществляется при помощи магнитных головок чтения/записи, которые позиционируют по радиусу носителя с одной дорожки на другую. Дисковые устройства, как правило, используют метод записи называемый методом без возвращения к нулю с инверсией (Not Return Zero – NRZ). Запись по методу NRZ осуществляется путем изменения направления тока подмагничивания в обмотках головок чтения/записи, вызывающее обратное изменение полярности намагниченности сердечников магнитных головок и соответственно попеременное намагничивание участков носителя вдоль концентрических дорожек. При считывании эти участки намагничивания вызывают перемены направления магнитного потока в головках чтения/записи и изменение полярности выходящего напряжения, воспринимаемые как логические единицы данных. Отсутствия такой перемены полярности напряжения расцениваются как логические нули. При этом, совершенно неважно, происходит ли перемена магнитного потока от положительного направления к отрицательному или обратно, важен только сам факт перемены полярности. Методы кодирования данных не влияют на перемены направления потока, а лишь задают последовательность их распределения во времени (способ синхронизации потока данных), так, чтобы, при считывании, эта последовательность могла быть преобразована к исходным данным.

Гибкий диск (англ. floppy disk), или лискета, - носитель небольшого объема информации, представляющий собой гибкий пластиковый диск в защитной оболочке. Используется для переноса данных с одного компьютера на другой и для распространения программного обеспечения.

Способ записи двоичной информации на магнитной среде называется магнитным кодированием. Он заключается в том, что магнитные домены в среде выстраиваются вдоль дорожек в направлении приложенного магнитного поля своими северными и южными полюсами. Обычно устанавливается однозначное соответствие между двоичной информацией и ориентацией магнитных доменов.

Информация записывается по концентрическим дорожкам (трекам), которые делятся на секторы . Количество дорожек и секторов зависит от типа и формата дискеты. Сектор хранит минимальную порцию информации, которая может быть записана на диск или считана. Ёмкость сектора постоянна и составляет 512 байтов.


Рисунок 2. Поверхность магнитного диска

В настоящее время наибольшее распространение получили дискеты со следующими характеристиками: диаметр 3,5 дюйма (89 мм), ёмкость 1,44 Мбайт, число дорожек 80, количество секторов на дорожках 18.

Дискета устанавливается в накопитель на гибких магнитных дисках (англ. floppy-disk drive ), автоматически в нем фиксируется , после чего механизм накопителя раскручивается до частоты вращения 360 мин -1 . В накопителе вращается сама дискета, магнитные головки остаются неподвижными. Дискета вращается только при обращении к ней. Накопитель связан с процессором через контроллер гибких дисков.

В последнее время появились трехдюймовые дискеты, которые могут хранить до 3 Гбайт информации. Они изготовливаются по новой технологии Nano2 и требуют специального оборудования для чтения и записи.

Если гибкие диски - это средство переноса данных между компьютерами, то жесткий диск - информационный склад компьютера .

Накопитель на жёстких магнитных дисках (англ. HDD - Hard Disk Drive) или винчестерский накопитель - это наиболее массовое запоминающее устройство большой ёмкости, в котором носителями информации являются круглые алюминиевые пластины - платтеры , обе поверхности которых покрыты слоем магнитного материала. Используется для постоянного хранения информации - программ и данных

Как и у дискеты, рабочие поверхности платтеров разделены на кольцевые концентрические дорожки, а дорожки - на секторы. Головки считывания-записи вместе с их несущей конструкцией и дисками заключены в герметически закрытый корпус, называемый модулем данных. При установке модуля данных на дисковод он автоматически соединяется с системой, подкачивающей очищенный охлажденный воздух. Поверхность платтера имеет магнитное покрытие толщиной всего лишь в 1,1 мкм, а также слой смазки для предохранения головки от повреждения при опускании и подъёме на ходу. При вращении платтера над ним образуется воздушный слой, который обеспечивает воздушную подушку для зависания головки на высоте 0,5 мкм над поверхностью диска.

Винчестерские накопители имеют очень большую ёмкость: от 1 до 3000 Гбайт. У современных моделей скорость вращения шпинделя (вращающего вала) обычно составляет 7200 об/мин, среднее время поиска данных 9 мс, средняя скорость передачи данных до 3000 Мбайт/с. В отличие от дискеты, жесткий дисквращается непрерывно . Все современные накопители снабжаются встроенным кэшем (обычно 64 Мбайта), который существенно повышает их производительность. Винчестерский накопитель связан с процессором через контроллер жесткого диска

Задание 2

Выполнение данного задания предусматривает решение примеров на перевод чисел из одной системы счисления в другую с представлением полных математических выкладок (точность представления чисел — до пятого знака после запятой) и представление чисел в форме с плавающей и с фиксированной точкой.

В первом примере необходимо перевести числа из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную.

Во втором примере необходимо перевести числа из двоичной системы счисления в десятичную, восьмеричную и шестнадцатеричную.

В третьем примере числа, заданные в форме с плавающей точкой необходимо представить в форме с фиксированной точкой.

Варианты заданий определяются по таблице:

194.741

729.753

10001111.00111

11100010.11001

8.182Е+0,3

3.579Е-02

2.951Е+04

9.426Е-01

194,741 10 = 11000010,10111102 =302,57331 8 =С2,ВDB22D

194 | 2

194 97 | 2

0 96 48 | 2


1 48 24 | 2

0 24 12 | 2


0
12 6 | 2


0
6 3 | 2


0
2 1


1

0,741 *2 = 1,482

0,482*2 = 0,964

0,964 *2 = 1,928

0,928*2 = 1,856

0,856*2 = 1,712

0,712*2 = 1,424

0,424*2 =0,848

194 | 8

192 24 | 8


2
24
3


0

0,741*8 = 5,928

0,928*8 = 7,424

0,424*8= 3,392

0,392*8 = 3,136

0,136*8 =1,088

194 | 16

192 12


2

0,741*16 = 11,856

0,856*16=13,696

0,696*16=11,136

0,136*16 =2,176

0,176*16=2,818

–729,753 10 = -1011011001.110000001 2 = -1331.60142 (8) = -2D9.C0C49 (16)

729| 2

728 364| 2


1
364 182| 2

0 182 91| 2

0 90 45| 2


1
44 22| 2

1 22 11| 2

0 10 5| 2


1
4 2 | 2


1
2 1

0

0,753 * 2 = 1,506

0,506*2=1,012

0,012*2 = 0,024

0,024*2=0,048

0,048*2=0,096

0,192*2=0,384

0,384*2=0,768

0,768*2=1,536

729 | 8

728 91 | 8

1 88 11 | 8

3 8 1

3

0,753 * 8 = 6,024

0,024*8=0,192

0,192*8 =1,536

0,536*8 =4,288

0,288*8= 2,304

729 | 16

720 45 | 16

9 32 2

13

0,753 * 16 = 12,048

0,048*16 = 0,768

0,768*16 = 12,288

0,288*16 = 4,608

8.182Е+03 =8182

3.579Е-02=0,03579

2.951Е+04 =- 29510

9.426Е-01 = -0,9426.

Задание 3

Целью данного задания является проверка умения студента работать с файловой системой. Задание состоит из двух частей. В первой части требуется записать шаблон, объединяющий в группу заданные файлы. Во второй части задания требуется записать маршруты (пути доступа) к заданным файлам, если иерархическое дерево папок диска имеет следующий вид:


Таблица вариантов заданий:

Запишите маршрут к следующим файлам:

Запишите шаблон, объединяющий…

карта.doc из корневой папки диска Setuр

Литература.doc из папки Курсовая

все файлы, имена которых начинаются на «доклад» и содержат не более семи символом;

все файлы без расширения;

D:\Setup\карта.doc

D:\Мгук\Работа\Курсовая\литература.doc

2) доклад?.

*.

Задание 4

Для выполнения задания по данному вопросу необходимо разработать в текстовом процессоре Microsoft Word рекламный лист на заданную тему. Документ должен содержать:

    текст;

    фигурный текст;

    рисунок;

    таблицу;

    Темы для разработки документов представлены в таблице:




    Ваши заботы о покупке/продаже дома

    Мы готовы

    Взять на себя

    Оформление собственности в течение 30 дней

    Вид жилья

    Общая площадь

    Жилая площадь

    Количество комнат

    Район

    Стоимость

    Квартира

    КСК

    100000

    Частичка

    Центр

    5000

    Дом

    1000

    Центр

    1000000

    Дача

    п. Знаменский

    35000

    Задание 5

    Решение задачи должно содержать следующие разделы:

    Постановка задачи.

    Список идентификаторов, включающий обозначение каждого идентификатора, его физический смысл и тип данных.

    Графическая схему алгоритма, описывающая процесс решения задачи (с подробными комментариями).

    Текст программы на языке высокого уровня, описывающей разработанный алгоритм (с комментариями).

    Расчет комплексного показателя качества товара:


    ,


    Решение

    Программа должна вычислять сумму вклада в зависимости от срока хранения по формуле:

    где S к — сумма вклада в конце срока хранения;

    S н — начальная сумма вклада;

    Р — процентная ставка, определяемая в зависимости от срока хранения вклада Т:


    Описание переменных

    Для решения задачи необходимы следующие переменные:

    T – срок хранения вклада, дней, тип данных – целое число (integer);

    P – процентная ставка, %, тип данных – вещественное число (real);

    S1 – начальная сумма вклада, тип данных – вещественное число (real);

    S2 – сумма вклада в конце срока хранения, тип данных – вещественное число (real).

    Графическая схема алгоритма (рисунок 1)

    Первым шагом пользователь вводит значение Т

    Сравниваем Т со значениями 15, 30, 60 и 90. Если Т не равно ни одному из значений, то выдаем сообщение об ошибке и выходим из программы.

    Если Т равно одному из значений, то задаем соответствующее значение P.

    Пользователь вводит значение S1.

    Вычисляем значение S2 по формуле, используя значения S1 .

    Выводим значение S2 на экран.


    Рисунок 2. Блок-схема алгоритма программы

    Текст программы на языке PASCAL

    program v11;

    var T:Integer;

    P,S1,S2:real;

    begin

    write(‘Введите срок вклада в днях (15,30,60 или 90):’); {Вывод приглашения для ввода Т}