Технологии связи по электросети (Power Line Communication, PLC) активно развиваются и становятся все более востребованными во всем мире. И Россия - не исключение. Их используют при автоматизации технологических процессов, организации систем видеонаблюдения и даже для управления «умным» домом.

Исследования в области передачи данных с использованием электросети ведутся достаточно давно. Когда-то применение PLC тормозила низкая скорость передачи данных и недостаточная защищенность от помех. Развитие микроэлектроники и создание современных, а главное более производительных процессоров (чипсетов), дали возможность использовать сложные способы модуляции для обработки сигнала, что позволило значительно продвинуться вперед в реализации PLC. Однако о реальных возможностях технологии связи по электросети до сих пор знают лишь немногие специалисты.

Технология PLC использует электрические сети для высокоскоростной передачи данных и основана на тех же принципах, что и ADSL, которая применяется для передачи данных в телефонной сети. Принцип работы следующий: сигнал высокой частоты (от 1 до 30 МГц) накладывается на обычный электрический сигнал (50 Гц) с применением различных модуляций, а сама передача сигнала происходит через электрические провода. Оборудование может принять и обработать такой сигнал на значительном расстоянии - до 200 м. Трансфер данных может осуществляться как по широкополосным (BPL), так и по узкополосным (NPL) линиям электропередачи. Только в первом случае передача данных будет идти со скоростью до 1000 Мбит/с, а во втором значительно медленнее — только до 1 Мбит/с.

На пределе скорости?

Сегодня пользователям доступны технологии PLC третьего поколения. Если в 2005 году, с появлением стандарта HomePlug AV, скорость передачи данных выросла с 14 до 200 Мбит/с (этого достаточно для предоставления так называемых «Triple Play» услуг, когда пользователям одновременно предоставляются высокоскоростной доступ в интернет, кабельное телевидение и телефонная связь), то последнее поколение PLC использует уже двойной физический уровень передачи данных — Dual Physical Layer. Вместе с FFT OFDM применяется Wavelet OFDM-модуляция, то есть ортогональное частотно-разделенное мультиплексирование, но с применением вейвлетов. Это позволяет в несколько раз поднять скорость передачи данных— до 1000 Мбит/c.

Однако важно понимать, что речь идет о физической скорости. Реальная скорость передачи данных зависит от многих факторов и может быть в разы меньше. Качество электропроводки в доме, скрутки в линии, ее неоднородность (например, в алюминиевой проводке затухание сигнала сильнее, чем в медной, что сокращает дальность связи примерно в два раза) — все это деструктивно влияет и на физическую скорость и качество передачи данных. Также PLC - все адаптеры должны находится на одной фазе в электрической сети, в электросети между адаптерами не должно быть гальванических развязок (трансформаторов, ИБП), пилоты, фильтры и УЗО снижают скорость передачи данных. Исключение - QPLA-200 v.2 и QPLA-200 v.2P, т.к. особенностью данных адаптеров является уникальная технология Clear Path. Используя технологию Clear Path, можно создать сеть даже тогда, когда PLC устройства подключены к разным фазам, т.е. эта технология динамически выбирает менее зашумленные каналы для передачи информации, тем самым увеличивая скорость передачи данных. В одной PLC -сети могут находиться до 8 устройств.

Говоря о PLC-технологии, за скорость принято брать полудуплексную или однонаправленную скорость. То есть, если указанная скорость равна 200 Мбит/c, то реальная будет составлять 70-80 Мбит/c. В реальной жизни физическую скорость с большой уверенностью можно делить пополам, и пропорционально уменьшать на 10% при подключении каждого мощного домашнего устройства -утюг, чайник, кондиционер, холодильник и пр.

В обычных бытовых условиях по проводам с помощью PLC сигнал может передаваться на расстояние около 200 м. Например, дом площадью 200 кв. м можно покрыть без проблем. Качество связи при этом будет зависеть от качества электрической сети. Преградой для прохождения сигнала может стать обыкновенный сетевой фильтр, который часто бывает встроен в удлинитель, источник бесперебойного питания или трансформатор. Следует помнить и то, что распространение сети по электропроводке ограничивается электрическим щитком с предохранителями. Так что создать сеть, например, с соседом по квартире не получится. Для этого лучше подойдет Wi-Fi.

Плюсы и минусы PLC

PLC-технологии, безусловно, заслуживают внимания, однако наряду с плюсами, у них есть и очевидные недостатки. Но обо всем по порядку. PLC помогает наладить качественное предоставление услуг Triple Play, не требует прокладки проводов для передачи данных, а, значит, и дополнительных затрат. Быстрый монтаж и возможность подключения к существующим сетям — тоже очко в пользу PLC. Кроме того, PLC-сеть можно легко разобрать и сконфигурировать, например, при переезде офиса в другое здание. Такая сеть легко масштабируется — можно организовать практически любую ее топологию с минимальными затратами (в зависимости от количества дополнительных PLC-адаптеров). В сложных условиях (железобетонные конструкции, высокий уровень электромагнитных помех) в отличие от беспроводных технологий Wi-Fi, WiMAX и LTE PLC-сеть будет работать без сбоев. При этом за счет применения самых современных алгоритмов шифрования обеспечена и безопасная передача данных по сети.

Недостатков у PLC меньше, но знать о них стоит. Во-первых, пропускная способность сети по электропроводке делится между всеми ее участниками. Например, если в одной PLC-сети две пары адаптеров активно обмениваются информацией, то скорость обмена для каждой пары будет составлять примерно по 50% от общей пропускной способности. Во-вторых, на стабильность и скорость работы PLC влияет качество выполнения электропроводки (например, медного и алюминиевого проводника). И в-третьих, PLC не работает через сетевые фильтры и источники бесперебойного питания, не оборудованные специальными розетками PLC Ready.

Применение PLC на практике

Сегодня PLC находит широкое практическое применение. В связи с тем, что технология использует существующую электросеть, она может быть использована в автоматизации технологических процессов для связки блоков автоматизации по электропроводам (например, городские электросчетчики).

Нередко PLC применяют при создании систем видеонаблюдения или локальной сети в небольших офисах (SOHO), где основными требованиями к сети являются простота реализации, мобильность устройств и легкая масштабируемость. При этом как вся офисная сеть, так и отдельные ее сегменты могут быть построены с помощью PLC-адаптеров. Часто в уже существующую офисную сеть необходимо включить удаленный компьютер или сетевой принтер, расположенный в другой комнате или даже в другом конце здания — c помощью PLC-адаптеров эту проблему можно решить за несколько минут.

Кроме того, PLC-технология открывает новые возможности для реализации идеи «умного» дома, в котором вся бытовая электроника должна быть завязана в единую информационную сеть с возможностью централизованного управления.

Технология PLC (Power Line Communication) — современная телекоммуникационная технология, базирующаяся на использовании силовых электросетей для высокоскоростного информационного обмена. Эксперименты по передаче данных по электросети велись достаточно давно, но низкая скорость передачи и слабая помехозащищенность были наиболее узким местом данной технологии. Но прогресс не стоит на месте, и появление более мощных DSP-процессоров (цифровые сигнальные процессоры) дало возможность использовать более сложные способы модуляции сигнала, такие как OFDM модуляция (Orthogonal Frequency Division Multiplexing), что позволило значительно продвинуться вперед в реализации технологии PLC.

Следует учесть, что в своем сравнительно небольшом отрезке исторического развития, применение данной технологии столкнулось с некоторыми трудностями, о которых я расскажу немного позже.

Возможности технологии PLC

Подключение к глобальной сети Интернет широко развивающийся бизнес, интернет-провайдеры предоставляют услуги связи практически повсеместно в офисе и дома. На сегодняшний день построено и эксплуатируется большое число высокоскоростных магистральных сетей, однако, подключение к ним конечных пользователей по-прежнему остается серьезной, часто бюрократической проблемой. Сегодня большинство конечных подключений осуществляется посредством прокладки кабеля от высокоскоростной линии до квартиры или офиса потребителя. Пожалуй, это наиболее дешевое решение, но в силу ряда причин прокладка кабеля крайне затруднительна или даже невозможна. Часто это вызвано разграничением зон влияния между интернет-провайдерами. В определенных территориальных областях конечный клиент вынужден, для осуществления подключения к сети Интернет, обращаться к провайдеру – который является непосредственным владельцем узла связи, территориально близко располагающегося по отношению к узлу клиента.

Не все провайдеры способны осуществить проброс оптико-волоконного кабеля через определенные объекты до конечного клиента, не имея на то разрешения, а стандартный UTP-кабель поддерживает стабильное соединение при длине не более 100 метров. Таким образом, в некоторых областях провайдерам просто невыгодно организовывать высокоскоростной доступ к Интернету, из-за стратегической неокупаемости затрат на специалистов и оборудование.

Так почему же не использовать уже имеющуюся в каждом здании систему силовых электрических коммуникаций. При этом любая электрическая розетка в здании может стать точкой выхода в глобальную сеть Интернет. Причем при грамотном планировании такого вида подключения, все, что требуется от потребителя – лишь наличие PowerLine модема (сетевого адаптера), соответствующим образом настроенного для связи с аналогичным устройством, установленным, как правило, в электрощитовой здания и подключенным к высокоскоростному каналу Интернет.

Такая технология как PLC может быть использована при создании локальной сети в небольших офисах, где основными требованиями к сети являются простота реализации, мобильность устройств и легкая расширяемость. При этом как вся офисная сеть, так и отдельные ее сегменты могут быть построены с помощью PowerLine адаптеров. Очень часто встречается ситуация, когда необходимо включить в уже существующую сеть удаленный компьютер или сетевой принтер, расположенный в другой комнате или даже в другом конце здания. С помощью PowerLine адаптеров эту проблему можно решить за 15 минут. Подобные решения возможны и при других типах соединения, однако PLC не призвана быть их абсолютной заменой, но является мощной альтернативой. Имея некоторые ограничения, данная система ничем не отличается от любых других типов интернет соединения.

Проблемы развития технологии PLC

Именно для успешного разрешения актуальных проблем связи была и создана технология PLC. Но тут следует оговориться! Подобные решения – не панацея, ведь всем известна популярность сетей WI-FI, по которым можно легко осуществлять беспроводную передачу данных, а также 3G и 4G.

На территории западных государств данная технология широко используется локальными провайдерами и простыми пользователями, также PLC применяется некоторыми интернет-провайдерами в РФ. Вообще, для западных систем связи эта технология представлялась и представляется очень перспективной. Тамошние электросети регулярно модернизируются, а электрификация затронула даже самые отдаленные территории и области.

Но беспроводные технологии более привлекательны как для западного, так и отечественного потребителя. Беспроводные сети и способы шифрования передаваемого сигнала первого поколения были не достаточно надежны для применения в ответственных отраслях. Оставляла желать лучшего и пропускная способность беспроводных каналов связи, скорость подобных соединений. В процессе своего развития и совершенствования беспроводные решения взяли вверх над PLC и даже над стандартным кабельным соединением. Появились новые технологические стандарты WI-FI сетей. Повсеместно стали использоваться устройства – репитеры, позволяющие расширить зону охвата беспроводного сигнала. Надо заметить, что во многих странах мира под гражданские системы беспроводной связи, под нужды рядовых граждан выделены самые выигрышные частоты. В наших с вами отечественных реалиях такие частоты закреплены за военными и правительственными учреждениями.

Однако, какими бы оптимистичными ни были результаты работы экспериментальных PLC-сетей за рубежом, в нашей стране эта технология столкнулась с рядом трудностей. Наша электрическая проводка сделана в основном из алюминия, а не из меди, которая используется в большинстве стран мира. Алюминиевые провода обладают худшей электропроводностью, что приводит к более быстрому затуханию сигнала.

Другая проблема заключалась в том, что у нас до сих пор не решены основные вопросы нормативно-правового регулирования использования таких технологий. Впрочем, последняя проблема актуальна и для Запада.

Считалось, что эта технология, а вернее совместимые устройства заполонят в огромных долях рынок HI-TECH оборудования. Открывались новые возможности при реализации идей умного дома, где вся бытовая электроника завязана в единую информационную сеть с возможностью централизованного управления. Электрическая сеть – идеальная среда передачи управляющих сигналов между бытовыми приборами, работающими в сети 110/220В. Но и среди решений умного дома взял верх именно беспроводной способ обмена короткими управляющими сигналами, не особо требовательными к качеству соединения и пропускной способности.

Все эти факторы сдерживали и сдерживают повсеместное развитие . Тем не менее, PLC успешно применяется на деле некоторыми интернет-провайдерами в новых зданиях, с современным электрооборудованием, а также энтузиастами в условиях квартиры или загородного дома. На рынке существует немалое количество приборов гибридного типа, совмещающих в себе и PowerLine, и WI-FI технологии одновременно!

Проблемы развития и особенности технологии PLC was last modified: Март 3rd, 2016 by Admin

17.10.1999 Юрий ПОДГУРСКИЙ, Владимир Заборовский

В последнее время наблюдается всплеск интереса к средствам передачи данных по линиям электропитания. Это обусловлено, прежде всего, повсеместно возрастающей потребностью в средствах телекоммуникаций как в глобальном, так и в локальном масштабах.

Системы управления и мониторинга в промышленности и на транспорте, в медицине, энергетике, системах экологической безопасности и других областях человеческой деятельности становятся все более интеллектуальными и распределенными. Одновременно значительное распространение получают новые виды информационного обмена - средства домашней автоматики, сети малых и домашних офисов (SOHO), распределенные системы охранной и иной сигнализации, которые также нуждаются в развитой инфраструктуре средств связи. При этом определяющую роль играет экономический фактор: средства информационного обмена, являясь «инструментом» коммуникаций, должны быть дешевыми и повсеместно доступными.

На фоне слабой инфраструктуры российской проводной связи именно широкая распространенность электрических сетей, отсутствие необходимости проведения дорогостоящих работ, связанных с созданием траншей и колодцев, пробивкой стен и прокладкой кабелей, а также возможность формирования симметричных каналов связи (рис. 1) стимулируют повышенный интерес к электрическим сетям как среде передачи данных.

Особенности линий питания

Сложность организации связи по линиям электропитания заключается в том, что существующие электросети первоначально не предназначались для передачи данных. Они характеризуются высоким уровнем шумов и быстрым затуханием высокочастотного сигнала, а также тем, что коммуникационные параметры линии, постоянные для традиционных физических сред, существенно меняются во времени в зависимости от текущей нагрузки. Специфической особенностью линий электропитания является и их разветвленная древовидная топология. Кроме того, при организации связи должны быть обеспечены электромагнитная совместимость и экранирование процессов передачи данных от собственно электропотребления.

Реализация систем передачи данных по электрическим линиям в России связана с дополнительными трудностями, заключающимися в том, что технические характеристики отечественных электрических сетей отличаются от характеристик сетей западных и пожалуй, (более важно), отсутствуют стандарты, определяющие главные параметры систем передачи данных по линиям электропитания.

Основные области применения

В настоящее время существует несколько стандартных системных подходов к передаче информации по линиям питания. Различия между ними состоят прежде всего в ориентации на конкретный класс приложений, а также в методах и средствах обеспечения надежного информационного взаимодействия.

Важнейшие области применения средств связи на основе электрических сетей показаны на рис. 2. Каждый класс приложений характеризуется специфическими требованиями к скорости и дальности передачи, методу доступа и другим показателям, определяющим качество передачи.

К низкоскоростным распределенным системам управления и учета относятся системы автоматического управления в цехах и на производственных территориях, системы жизнеобеспечения зданий (лифты, кондиционеры, вентиляция), складские системы, средства учета энергопотребления, системы охранной и пожарной сигнализации в дачных поселках, гаражных кооперативах и т.д.

Другой класс приложений составляют средства домашней автоматики, позволяющие комплексно управлять бытовыми приборами вплоть до автоматического согласованного включения кофеварок и тостеров, а также вывода на телеэкран изображения с входной видеокамеры при появлении нежданных гостей. Сюда же можно отнести локальные сети для домашних и малых офисов, развернутые в пределах небольшого здания или отдельной квартиры.

Несомненный интерес представляют примеры успешного использования электрических сетей для организации телефонной связи в поселках и на ограниченных территориях, а кроме того, для обеспечения высокоскоростного доступа в Internet. Прогресс в этой области может не только изменить расстановку сил на рынке Internet-провайдеров, но и вызвать к жизни новые принципы проектирования силовых электрических сетей и их оптимальной структуризации с учетом как энергетических, так и коммуникационных требований.

Архитектура взаимодействия

Архитектура информационного взаимодействия на основе электросетей имеет иерархическую структуру; в обобщенном виде она представлена на рис. 3. Даже в рамках одной прикладной области конкретные ее реализации отличаются методами надежной доставки данных на различных уровнях иерархии.

Повышение надежности передачи на физическом уровне связано с выбором способа модуляции и частотного диапазона, с использованием методов цифровой обработки сигналов и адаптивного управления. Здесь в первую очередь следует отметить перспективность алгоритмов широкополосной (Spread Spectrum) модуляции, существенно повышающей помехоустойчивость передачи.

При использовании SS-модуляции мощность сигнала распределяется в широкой полосе частот, и сигнал становится незаметным на фоне помех. На принимающей стороне значимая информация выделяется из шумоподобного сигнала с использованием уникальной для данного сигнала псевдослучайной кодовой последовательности. С помощью различных кодов можно осуществлять передачу сразу нескольких сообщений в одной широкой полосе частот. Описанный принцип лежит в основе метода множественного доступа с кодовым разделением каналов (CDMA). Технологии SS-модуляции и CDMA подробно рассмотрены в литературе (главным образом, на примерах использования в сотовых телефонных сетях). Здесь лишь отметим, что помимо помехоустойчивости SS-модуляция обеспечивает высокий уровень защиты информации.

Основные способы повышения надежности передачи на канальном уровне следующие:

  • разбиение пакетов данных на кадры небольшой длины;
  • использование корректирующих кодов для выявления и исправления ошибок;
  • применение низкоуровневых протоколов надежной передачи на основе подтверждений приема коротких кадров;
  • использование эффективных методов управления доступом к среде передачи данных.

Короткие пакеты позволяют увеличить не только вероятность достоверной передачи порции данных, но и эффективность адаптации передающей стороны к быстро меняющимся характеристикам сети. При использовании широкополосной модуляции это выражается в оптимальном перераспределении мощности сигнала в полосе частот с учетом фактического спектра помех.

Некоторые фирмы разработали оптимизированные протоколы доступа к среде, учитывающие особенности «электросетевых» приложений и зашумленность линий питания. Поскольку значительная часть таких приложений (автоматический учет, охранная сигнализация, домашняя автоматика) предполагает наличие в сети одного активного узла, для обеспечения доступа целесообразно использовать методы опроса или передачи маркера. Это снимает проблемы распознавания несущей в зашумленных сетях и необходимость выявления коллизий. В целях повышения надежности самого управления доступом используется принцип «трехкратного рукопожатия» при передаче маркера.

Базовые компоненты

Типовая функциональная схема и основные компоненты коммуникационного узла «электрической сети связи» представлены на рис. 4.

Ядром коммуникационного узла являются контроллеры сетевого, канального и физического уровней; последние часто называются также приемопередатчиками или трансиверами. Как правило, эти компоненты реализуются на базе универсальных либо специализированных микропроцессоров и выпускаются рядом фирм в виде наборов микросхем.

Изолирующий (соединительный) модуль в общем случае осуществляет две функции: изолирует аппаратуру коммуникационного узла от напряжения питания и выделяет информационный сигнал из силового напряжения. Обычно этот модуль выполняется из отдельных радиоэлектронных компонентов.

Некоторые фирмы изготавливают специальные микросхемы усилителей мощности, позволяющие передавать сигнал на большие расстояния. На основе этих компонентов может быть построен электромодем со стандартным или заказным интерфейсом пользователя.

Для обеспечения совместимости изделий различных производителей (в рамках одного класса приложений) предпринимаются усилия по стандартизации технологий передачи информации по линиям питания.

Технологии и продукты

Наиболее распространенными технологиями передачи данных по электрическим сетям 120/220 В являются:

  • X-10 одноименной фирмы (http://www.x10.com );
  • CEBus компании Intellon (http://www.intellon.com );
  • LonWorks корпорации Echelon (http://www.echelon.com );
  • Adaptive Networks, предложенная фирмой с таким же названием (http://www.adaptivenetworks.com );
  • DPL 1000 производства NOR.WEB (http://www.nor.webdpl.com ).

Технология X-10 разработана в 1978 г. корпорацией Х-10 с ориентацией на задачи дистанционного управления светильниками и простейшими бытовыми приборами. Для передачи двоичной информации здесь используется генерация коротких радиоимпульсов частотой 120 кГц в момент перехода переменного напряжения через ноль. Выбор такой схемы кодирования обусловлен тем, что нулевое значение напряжения характеризуется меньшими уровнями шумов и влияния других устройств, подключенных к сети.

Двоичной «1» соответствует передача частоты 120 кГц в течение 1 мс, а двоичному «0» - отсутствие радиоимпульса. В целях уменьшения ошибок для передачи одного бита используются два перехода через ноль. Поэтому скорость передачи ограничена величиной 60 бит/с (для сети 120 B, 60 Гц).

Прикладному уровню соответствует язык управления простейшими устройствами. Полная команда Х-10 состоит из двух пакетов, разделяемых интервалами в три периода для ее передачи требуется 47 циклов или приблизительно 0,8 с.

Контроллеры и адаптеры Х-10 выпускаются многими фирмами США. В ряде стран Европы доступны продукты Х-10, адаптированные к европейским электросетям. Стоимость модулей Х-10 колеблется от 8 долл. за пассивный приемник до 50-100 долл. за многофункциональное активное устройство.

Основными недостатками системы на базе Х-10 являются низкая скорость передачи и функциональная ограниченность.

Технология Intellon CEBus (Intellon SSC) создавалась компанией Intellon для передачи данных по линиям электропитания (120 В, 60 Гц) в соответствии со стандартом домашней сети CEBus (более подробную информацию об этом стандарте можно найти в Internet по адресу http://www.CEBus.com ). Стандарт CEBus (EIA-600) определяет требования, которые сделают возможным взаимодействие бытовых приборов и устройств домашней автоматики на основе различных физических сред передачи: линий электропитания, радио- и инфракрасных каналов, коаксиального кабеля и др. Модель CEBus включает протоколы прикладного, сетевого, канального и физического уровней эталонной модели OSI.

Функции прикладного уровня выполняет язык приложений CAL (Common Application Language), описанный в документе EIA-721. Он определяет унифицированный синтаксис для описания функционирования различных устройств и набор типовых команд. CAL является объектно-ориентированным языком, позволяющим задавать прикладные контексты взаимодействия, в частности звуковое управление телевизором, музыкальным центром, видеомагнитофоном и СD-плейером. Каждый контекст далее разбивается на объекты, представляющие собой такие параметры управления, как громкость, яркость и т.д.

Протокол сетевого уровня формирует пакеты данных, содержащие всю необходимую информацию об адресах источника и приемника.

Стандартом CEBus предусмотрена одноранговая модель взаимодействия, при которой любой узел имеет свободный доступ к сети. Для предотвращения коллизий на канальном уровне задействован механизм CSMA/CDCR.

На физическом уровне Intellon CEBus Powerline Carrier Protocol использует технологию SS-модуляции, предусматривающую передачу каждого бита данных в полосе частот 100-400 кГц.

Компания Intellon предлагает семейство продуктов Power Line Evaluation Kit, реализующих технологию Intellon CEBus: от комплекта микросхем до системного решения и средств проектирования сети. Его стоимость - 245 долл. По имеющейся информации, Microsoft приобрела лицензию на использование технологии Intellon CEBus для передачи данных по электрическим сетям.

Технология LonWorks (Local Operation NetWorks) разработана американской корпорацией Echelon с целью создания распределенных систем (сетей) управления промышленного и бытового назначения. LonWorks предоставляет средства и конструктивные блоки, необходимые для проектирования, монтажа и обслуживания интеллектуальных взаимодействующих узлов и подсистем, включающих различные типы датчиков, устройств управления, индикации и т.д.

Основными компонентами технологии LonWorks являются:

  • протокол LonTalk;
  • микропроцессор Neuron Chip (3 х 8 бит ЦП, 10 Кбайт ОЗУ, 10 Кбайт ПЗУ);
  • специализированные модули - трансиверы для различных сред передачи, управляющие модули, сетевые адаптеры и маршрутизаторы;
  • средства проектирования - LonBuilder (конфигурирование и отладка сетей LonWorks), NodeBuilder (конфигурирование отдельного узла), LonMaker (анализ протоколов);
  • программные шлюзы - Ethernet, Т1, Х.25, Bitbus, Profibus, CAN, Modnet, SINEC, Grayhill, Opto22 (цифровой), OptoMux, Modbus, ISAbus, STD32 bus, PC/104, VMEbus и EXMbus.

Основу технологии LonWorks составляет протокол LonTalk, используемый узлами сети для обмена информацией. Каждый узел сети должен содержать микропроцессор, реализующий функции данного протокола.

Протокол LonTalk является открытым и может быть «встроен» в любой подходящий микропроцессор. Примером такого встраивания является упомянутый выше микропроцессор Neuron Chip, который разработан по технологии LonWorks и производится компаниями Motorola и Toshiba. Этот чип обеспечивает эталонную реализацию LonTalk и допускает использование как в задачах управления обменом данных, так и для тестирования других реализаций указанного протокола.

LonTalk представляет собой семиуровневый коммуникационный протокол, позволяющий осуществлять надежную передачу данных через различные физические среды - витую пару, радиоканал (RF), инфракрасный канал, линии электропитания, коаксиальный или оптический кабель. Для среды каждого типа разработаны трансиверы, поддерживающие работу сети при различных длинах каналов, скоростях передачи и сетевых топологиях. Применяемый метод доступа - CSMA.

Для линий электропитания 24/120/220/380/480 В переменного (50/60/400 Гц) и постоянного тока разработано несколько трансиверов (PLT), выполненных в виде микросхем и микросборок.

Цена компонентов LonWorks достаточно велика: 42 долл. - за трансивер, от 2000 долл. - за систему программирования.

Технология LonWorks находит применение прежде всего в системах жизнеобеспечения зданий, промышленной и домашней автоматики. Она является одной из лидирующих в области распределенных управляющих сетей. Это подтверждается и тем, что в последнее время к разработкам домашних сетей на основе LonWorks активно подключилась Microsoft, а компания Cisco Systems продемонстрировала возможность доступа через Internet к узлам сети LonWorks с помощью обычных браузеров.

Корпорация Adaptive Networks (ANI) выпускает ряд продуктов, поддерживающих высоконадежную передачу данных по любым видам электропроводки, в том числе соответствующим европейскому стандарту CENELEC. Технология, запатентованная ANI, обеспечивает эффективную скорость передачи до 115 кбит/с (физическая скорость 268 кбит/c) и надежность, сопоставимую с таковой для специальной выделенной кабельной инфраструктуры.

В 1991 г. технология Adaptive Networks была утверждена в качестве стандарта передачи данных для систем контроля в бортовых холодильных контейнерах (ISO 10368). Ее отличительными особенностями являются:

  • обеспечение надежной передачи данных при высоком уровне помех за счет быстрой адаптации широкополосного сигнала к реальным характеристикам электросети;
  • возможность работы с существующим сетевым ПО, ориентированным на витую пару или другой вид кабеля;
  • использование прозрачного, надежного протокола канального уровня с исправлением ошибок (вероятность ошибочной передачи бита равна 10 -9);
  • интегральная реализация, не требующая дополнительной интерфейсной логики;
  • гибридная схема маркерного доступа к среде, используемая при достаточно большой загруженности сети.

В настоящее время выпускаются комплекты микросхем и модули, обеспечивающие эффективную пропускную способность 4,8 (AN48), 19,2 (AN192) и 100 кбит/с (AN1000). Для каждого набора микросхем предлагаются средства проектирования (Evaluation Kit). Стоимость компонентов и инструментальных средств достаточно высока.

Технология DPL 1000, позволяющая передавать данные по электросетям со скоростью до 1 Мбит/с, разработана английской компанией NOR.WEB (совместное предприятие Nortel Networks и United Utilities).

DPL 1000 можно по праву считать революционным шагом в развитии средств передачи данных по линиям электропитания, поскольку она открывает возможность практически всеобщего прямого доступа в Internet по крайне низким ценам. Если испытания, проводимые в настоящее время в нескольких странах Европы, подтвердят работоспособность систем на основе DPL1000, то в будущем можно ожидать существенных изменений на рынке провайдерских услуг и снижения расценок на доступ в Internet.

Новая технология базируется на запатентованных средствах экранирования данных от электрических наводок. Технические подробности ее реализации в доступных источниках практически отсутствуют. DPL 1000 представляет собой законченное решение для передачи данных от понижающей трансформаторной подстанции до конечного пользователя в доме или офисе.

В соответствии с технологией DPL 1000 производится определенная настройка рабочих параметров фрагмента распределительной электрической сети, подключенного к низковольтной обмотке понижающего трансформатора, после чего он может использоваться в качестве локальной сети. При этом снимается проблема «последней мили» для Internet-провайдеров и обеспечивается постоянный прямой доступ пользователей к Internet без загрузки телефонных абонентских линий.

В локальные сети на основе DPL 1000 входят следующие аппаратные компоненты:

  • центральная станция, которая обеспечивает подключение локальной сети к магистральным каналам связи и сетевое администрирование;
  • базовая станция, размещаемая на трансформаторной подстанции и реализующая подключение информационной локальной сети к низковольтным силовым линиям питания;
  • присоединительное устройство, которое устанавливается на входе силового кабеля в дом (рядом с электросчетчиком) и обеспечивает стыковку с внутренней информационной сетью;
  • коммуникационный модуль, подключаемый к компьютеру, на котором устанавливается коммуникационное ПО.

В настоящее время в нескольких европейских странах развернуты демонстрационные зоны для «обкатки» технологии DPL 1000. Например, в Великобритании с ее помощью к Internet подключена общеобразовательная школа, а в Германии на основе DPL 1000 первые пользователи получили постоянный выход во Всемирную сеть со скоростью до 1 Мбит/с в обоих направлениях.

Отдельные компоненты для передачи данных по электросетям создают и другие фирмы, среди которых следет отметить Intelogis и ITRAN.

Список используемых сокращений

AMR (Automated Meter Reading) - автоматическое считывание показаний счетчиков.

ASK (Amplitude-Shift Keying) - амплитудная манипуляция.

ASST (Adaptive Spread Spectrum Transmission) - адаптивная широкополосная передача; патентованная технология компании Adaptive Networks.

BPSK (Binary Phase-Shift Keying) - двухпозиционная фазовая манипуляция.

CAL (Сommon Application Language) - унифицированный язык приложений стандарта CEBus.

CEBus (Consumer Electronics Bus) - шина бытовой электроники; стандарт взаимодействия на основе домашней сети, разработанный ассоциацией EIA.

CENELEC (European Committee for Electrotechnical Standartization) - Европейский комитет стандартов по электротехнике.

CDMA (Code Division Multiple Access) - множественный доступ с кодовым разделением каналов. Метод доступа при использовании широкополосной (SS) модуляции. Осуществляется за счет перемножения последовательности полезных битов информации на индивидуальную псевдослучайную последовательность более коротких импульсов.

DCSK (Differential Code Shift Keying) - дифференциальная кодовая манипуляция; технология широкополосной модуляции, разработанная фирмой ITRAN Сommunications.

DPL (Digital Power Line) - «цифровая» линия электропитания.

EIA (Electronics Industry Association) - Ассоциация электронной промышленности.

FCC (Federal Communications Commission) - Федеральная комиссия связи (США).

FSK (Frequency-Shift Keying) - частотная манипуляция.

ICSS (Integrated Circuit/Spread Spectrum) - интегральные микросхемы для широкополосной модуляции; торговая марка фирмы National Semiconductor.

PLT (Power Line Tranceiver) - трансивер для передачи данных по линии электропитания.

PSK (Phase-Shift Keying) - фазовая манипуляция, при которой фаза несущей принимает только фиксированные из ряда допустимых значений (например, 0, 90, 180 и 270 град.), а информация закладывается в изменения фазы несущей.

SOHO (Small Office/Home Office) - малый/домашний офис.

SSC (Spread Spectrum Carrier) - «широкополосная» несущая.

SST (Spread Spectrum Transmission) - широкополосная передача.

Электромодемы ЭМ-20 и ЭМ-30

Производитель: ЦНИИ РТК

Тип устройства: средство передачи информации по сети электропитания 220/380 В

Линии связи: сети питания 24/120/220/380 В переменного (50/60/400 Гц) или постоянного тока, а также обесточенные линии

Дальность передачи, км: 0,5-1,0 (территория одной подстанции)

Скорость передачи, кбит/с: 4,8; 9,6 или 50,0

Интерфейсы: RS-232, RS-485, заказные

Возможность адресного вызова

Возможность двунаправленной передачи

Многоканальная передача речи

Области применения:

  • комплексные системы безопасности (охранная, пожарная, аварийная сигнализация в гаражах, садовых кооперативах, музеях, заповедниках, отелях);
  • системы удаленного учета параметров и распределенного управления (локальные системы энергосбережения, перекачивающие и складские системы);
  • оперативно разворачиваемые системы передачи информации (выставки, выездные мероприятия);
  • автоматика зданий и объектов особого режима;
  • локальные сети передачи данных и речи на основе существующих линий электропитания 220/380 В.


Разберем, прежде всего, что представляет собой современная силовая сеть, обеспечивающая доставку электроэнергии потребителям (рис. 3.1). Имеется линия электропередачи ЛЭП 110 кВ, которая подходит к понижающей подстанции. Далее напряжение 110 кВ трансформируется в напряжение 10 кВ, затем на подстанции  в трехфазное напряжение 220 В. Это фазное напряжение, и таких фаз три  Ф1, Ф2, Ф3, линейное напряжение  380 В.

По готовой проводке можно легко организовать связь в любом сечении сети (см. рис. 3.1). В энергосистемах России это и делается, хотя неудовлетворительное состояние сети и алюминиевые провода весьма ограничивают этот процесс. Однако поскольку мы говорим о «последней миле», нас будет интересовать технология в относительно низковольтовой части, а именно в трехфазных бытовых сетях напряжением 220 В.

Суть понятна – не надо «тянуть» сеть, а цели следующие: низкоскоростная передача данных (управление, учет); высокоскоростная передача данных (Интернет); телефония; домашняя автоматика, сервис «умный дом».

По этой технологии связи идет вторжение в чужую сеть, и в России существует ГОСТ Р51317.3.8-99  «Передача сигналов по низковольтовым электрическим сетям», регламентирующий такое вторжение (стандартом определена полоса частот в диапазоне 3 – 525 кГц) .

В соответствии с ГОСТ Р51317.3.8-99 связь по силовой сети может быть организована в следующих диапазонах частот:

1) 3 – 9 кГц – может использоваться по согласованию с потребителями электрической энергии;

2) 9 – 95 кГц – запрещен для использования;

3) более 95 кГц – разрешен без ограничений (любой вид кодировки, модуляции).

Наиболее современной и распространенной является технология Powerline, ориентированная на цифровую обработку микропроцессором (DSP). В настоящее время с помощью этой технологии возможна передача информации со скоростью до 85 Мбит/с на расстояние 200 м.

Особенности технологии PLC:

связь возможна, если все терминалы подключены к одной фазе (см. рис. 3.1);

значительные затухания в линии;

существенные помехи кондуктивного характера (кондуктивные помехи представляют собой токи, текущие по проводящим конструкциям и по земле);

нестабильность линии связи.

Все это накладывает существенные ограничения на использование описанной технологии. Рассмотрим методы, применяемые в настоящее время.

Проблемы помехоустойчивости решаются при кодировании и модуляции. Заметим, что такие системы строятся по адаптивному принципу. В начале передачи устанавливается пробный режим «Вкл./выкл.» и идет мониторинг линии (прежде всего по затуханию). В зависимости от состояния меняются частоты и скорость работы, т. е. идет адаптированная передача.

Импульсные помехи, возникшие при коммутациях, могут быть столь короткими (менее 1 мкс), что система может не успеть адаптироваться. Для этого применяют избыточные коды  сверточные (см. разд. 1), коды Рида – Соломона с декодированием по алгоритму Витерби.

Процедуры декодирования подробно рассматриваются в теории кодирования , мы же остановимся на сути декодирования по алгоритму Витерби (алгоритм получил название декодирования по максиму правдоподобия). Допустим, имеется множество передаваемых кодовых комбинаций U i и одна из них передается. При декодировании известны возможные кодовые комбинации R j . В декодере производится вычисление условных вероятностей P(R j /U i), естественно, все они разные. Из множества этих вероятностей выбирается максимальная и принимается соответствующее ей решение  R j .

Декодирование кода Хемминга предполагает регулярное правило решения, а алгоритм Витерби – статис-тическое.

Модуляция. Высокоскоростной поток разбивается на несколько низкоскоростных, по каждому из которых передаются биты исходного слова. Эти низкоскоростные потоки подаются на частотный модулятор с несколькими несущими (поднесущими) (рис. 3.2).

При обычной FDM (частотной модуляции) между несущими вводится большой частотный интервал для лучшего разделения сигналов в приемнике, но использование спектра неэффективно, так как сигнал в целом занимает большую полосу.

Предположим, сигнал низкоскоростного потока (бит)  прямоугольный простейший импульс. По теореме о переносе спектра его спектр переносится в область поднесущей в виде двух боковых полос. И так будет у каждой поднесущей (рис. 3.3). Весь этот набор формирует полосу частот сигнала.

ВPLC-технологии применяют ортогональное частотное разделение, т. е. спектры при ортогональных несущих (рис. 3.4). Эта модуляция называется OFDM. Нетрудно заметить, что несущие частоты выбраны при значении других спектров, равных нулю. Ортогональность спектров позволила уменьшить полосу частот всего сигнала (см. рис. 3.4).

0 5 10 15 20 25 30 35 40 рад/с 50

Рис. 3.3. Спектр сигнала FDM

0 3 6 9 12 15 18 21 24 рад/с 30

Рис. 3.4. Спектр сигнала при OFDM

На этом процесс модуляции не заканчивается. Каждая несущая модулируется по какому-либо закону. Это может быть, например, квадратурная амплитудная модуляция (КАМ), фазовая относительная модуляция (ОФМ) и др., но в любом случае это должна быть многопозиционная система сигналов, позволяющая повысить пропускную способность канала.

При многопозиционной ОФМ-модуляции в каждой поднесущей кодируется сразу два бита (дибит) по следующему принципу: Δφ = 0, биты 00; Δφ = = 90, биты 01; Δφ = 180, биты 10; Δφ = 270, биты 11.

Четыре поднесущие, с помощью каждой из которых реализуется ОФМ-2, приведены в табл. 3.1.

Таблица 3.1

Кодирование поднесущих

Поднесущая,

После кодирования все поднесущие собираются в один пакет, несущий информацию (рис. 3.5). Таким образом передается последовательность 00100111.

В итоге сборки сформирован сигнал DQPSK – дифференциальной квадратурной фазовой манипуляции.

ВтехнологииPowerline используется 84 поднесущих с шагом в 0,2 МГц в полосе частот 4 – 21 МГц (полоса разрешена стандартом), и по каждой поднесущей передается два бита.

Вернемся к адаптации системы к переменным условиям среды. Затухание линии не постоянно, так как это бытовая сеть энергоснабжения, во время тестирования может быть обнаружено большое затухание на частотах некоторых поднесущих. В технологии предусмотрен специальный метод решения этой проблемы – динамическое включение и выключение передачи сигналов на пораженных поднесущих (рис. 3.6). Естественно, что скорость передачи при этом меняется.

Благодаря данному методу теоретическая скорость технологии Powerline может достигать 100 Мбит/с.

Обработка сигнала OFDM производится сигнальным микропроцессором, а формирование линейного сигнала – специальным модемом, для которого разработаны микросхемы. Например, на основе микросхемы К1446ХК1 разработан трансивер для клиентского модема со следующими параметрами: скорость  до 200 Мбит/с, модуляция OFDM с 1530 поднесущими (компания TelLink).

Бытовая сеть электропитания служит общей средой передачи для нескольких терминалов, и в одно время на связь могут выходить несколько устройств. Для предотвращения конфликтов и столкновения трафика необходимо придерживаться протокола доступа к среде. В данной технологии принят известный протокол Ethernet (CSMA/CD) с некоторыми добавлениями приоритета – пакеты голоса и видео передаются с максимальным приоритетом, так как для этих данных задержка недопустима.

ТехнологияPowerline не единственная в этой области. Есть технология стандарта Х.10, которая применяется при компьютеризации жилой квартиры («умный дом») . Суть этой технологии проста. Передача сигнала осуществляется на частоте 50 Гц. В момент времени перехода синусоиды через ноль вводится временное окно, через которое и происходит передача (рис. 3.7). В окно помещается радиоимпульс частотой 120 кГц, а помехи создаются «кусочком» вырезанной синусоиды . Скорость работы невелика – до 50 бит/с, но этого достаточно для управления бытовыми приборами.

Примерный состав сети, построенной на основе PLC-технологии, показан на рис. 3.8.

4. Атмосферные оптические линии

Атмосферная оптическая линия – это линия с открытым оптическим каналом через атмосферу (рис. 4.1). На рис. 4.1 приняты следующие обозначения: ФД  фотодетектор; мультиплексор  цифровое устройство, объединяющее стандартные цифровые потоки Е1; демультиплексор выполняет обратную операцию.

Поток Е1 состоит из 30 цифровых каналов, по которым информация поступает к терминалам. Так что можно считать, что система участвует в решении проблемы «последней мили».

Можно назвать следующие преимущества оптического канала:

как и в любом оптическом канале, большая пропускная способность;

отсутствие помех электромагнитного характера;

информационная безопасность. Оптический луч сфокусирован в узкий пучок и злоумышленнику невозможно «включиться» в него;

возможность быстрого развертывания системы, что особенно важно в условиях плотной городской застройки;

не требуется получения разрешения у органов надзора на использование рабочих частот.

Существенный недостаток атмосферного канала – зависимость связи от состояния атмосферы. Именно по этой причине система может перекрыть только незначительное расстояние – до 3 км. Что же представляет собой атмосферный канал? Атмосфера состоит из атомов различных веществ, и они влияют на ее прозрачность в оптическом диапазоне. Прозрачность зависит от массы воздуха, от содержания водяного пара и пыли. Затухание определяет длина волны излучения. Атмосфера прозрачна в диапазоне от 0,3 до 2 мкм. На участке видимого спектра от 0,6935 до 0,6943 мкм имеется несколько микроокон прозрачности .

На среду передачи влияют фон, естественная освещенность окружающей среды, ослабление, турбулентность, хаотические изменения скорости, температуры, давления атмосферы, что приводит к случайным замираниям сигнала.

Наиболее известны в настоящее время технологии FSO, LaserLink. Остановимся на их особенностях.

Излучатели. Работают в диапазоне 0,75 – 0,9 мкм. В качестве излучателей применяют как полупроводниковые лазеры, так и светодиоды. Отметим следующие особенности излучателей:

применяется автоматическая установка угла излучения (диаграмма направленности) в зависимости от длины трассы. Чем длиннее трасса, тем уже диаграмма, и на приемник попадает более сконцентрированная мощность. Для реализации установки используются два лазера с двумя объективами (антеннами). Один лазер имеет большой угол излучения, другой  узкий. Переключение лазеров идет автоматически;

при узком луче излучения имеется автоматическая система юстировки, точного совпадения луча с приемной антенной. Иначе принимаемый луч может потеряться;

скорость передачи зависит от затухания и меняется автоматически. При большом затухании сигнала скорость падает и наоборот;

в некоторых технических решениях приемопередающего модуля зависимость от прозрачности атмосферы исключается переходом на другую длину волны в другом окне прозрачности (резервный канал).

Приемник. Используются фотодиоды со структурой PIN (структура типа P-I-N-полупроводника) и лавинные фотодиоды (рис. 4.2). Такие структуры имеют повышенный коэффициент чувствительности, малоинерционные.

Специфика названных фотодиодов следующая. В P-I-N-полупроводнике имеется один слой чистого полупроводника I с хорошей оптической прозрачностью. Оптическая волна проникает на значительную глубину, и возбуждение электронов идет в большом объеме. В лавинном фотодиоде идут лавинные процессы размножения носителей тока. Указанные процессы способствуют увеличению чувствительности приемника.

Приемник и излучатель объединены в приемопередающий модуль (ППМ), в котором находится и кодек (рис. 4.3). Апертура  это способность оптического объектива собирать свет, обычно она характеризуется угловыми размерами. Двух- и трехапертурные системы позволяют решить перечисленные выше задачи, а именно:

переход на резервную длину волны в случае большого затухания на основной;

изменение диаграммы направленности в зависимости от расстояния меж-ду точками приема и передачи;

возможность отслеживать положение оптической оси атмосферной линии и корректировать ее. Это особенно важно при работе в условиях города, так как вибрации зданий, ветровые нагрузки и другие причины могут привести к потере связи.

Интересно решение приема сигналов в технологии FSO. В передатчике излучаются два когерентных, пространственно разнесенных луча с одинаковой амплитудой. Один луч опорный, а другой несет информацию, т. е. модулируется по фазе. Конечно, оба луча одинаково поражаются вредными воздействиями и возмущениями среды. Эти лучи попадают на фотоприемник, который выполнен в виде матрицы из фотодиодов (рис. 4.4). Пришедшие лучи создают на поверхности матрицы интерференционную картину. В некоторых точках матрицы произойдет усиление суммарной электромагнитной волны, а в других  ослабление, т. е. образуются темные и светлые места.

Соответственно поведут себя и сигналы, снятые с фотодиодов. При смене фазы в информационном луче на 180 положение темных и светлых областей поменяется, поменяются и сигналы. Матрица имеет большую площадь, и поэтому проблем с вводом излучения в приемник нет.

У данного метода есть еще одна особенность. Известны два метода приема оптических сигналов – прямого преобразования и гетеродинный (термин пришел из радиотехники). Прямой метод прост в реализации: на фотодиод падает луч и снимается напряжение, обратное для P-N-перехода. Этот метод нашел применение в кабельной оптике.

Второй метод, гетеродинный, более сложен и требует наличия маломощного источника в самом приемнике. Итак, на вход приемника пришел информационный сигнал, он складывается с сигналом гетеродина. Оптические сигналы  это электромагнитные волны. Запишем их так:  напряженность электрического поля информационной волны и
 напряженность поля гетеродина. Попав на площадку матрицы ФД, сигналы складываются: . Фотодиод выдает ток (или напряжение), пропорциональный падающей мощности (квадрату напряженности поля):

Если раскрыть произведение косинусов, то в приведенном выражении можно выделить члены, содержащие информацию о фазе информационного луча φ. Их будет несколько, и в том числе
, который значительно увеличит уровень полезного сигнала. Напомним, что в атмосферном канале (см. рис. 4.1) присутствует фон. По сути это помеха для связи, и за счет члена
, входящего в приведенное выше выражение, возрастает сигнал, увеличивается соотношение «сигнал/помеха». Таким образом, в какой-то мере решается проблема помехоустойчивости.

Кодирование информации идет в канальном кодере Рида – Соломона.

Цифровые потоки Е1 объединяются по плезиохронному принципуPDH. Для объединения используется код HDB3. Это трехуровневый код, в котором исключаются длинные последовательности нулей. Эта мера необходима для сохранения синхронизации системы. Принцип образования такого кода и его отличие от кода AMI показаны на рис. 4.5. В коде AMI длинные последовательности нулей фактически означают потерю сигнала. Выделить из этого кода синхронизирующую последовательность невозможно.

Если в коде HDB3 более четырех нулей, в информационную последовательность вставляется служебный сигнал (V-сигнал) и синхронизация сохраняется.

На основании приведенного материала можно сделать следующие выводы:

1)в приемнике используются свойства интерференционной картины на матричной мишени фотодиодов, т. е. применяется гетеродинный способ приема. В качестве гетеродина используется сигнал второго лазера;

2) для передачи используется трехпозиционный код HDB3, допускающий синхронизацию системы;

3) для организации тракта передачи применяются светодиоды, полупроводниковые лазеры и средства корректировки;

4) в основе принимающей матрицы используются специальные фотодиоды.