Проблема идентификации личности при допуске к закрытой информации или объекту всегда была ключевой. Магнитные карты, электронные пропуска, кодированные радиосообщения можно подделать, ключи можно потерять, при особом желании даже внешность можно изменить. Но целый ряд биометрических параметров является абсолютно уникальным для человека.

Где применяется биометрическая защита


Современные биометрические системы дают высокую надежность аутентификации объекта. Обеспечивают контроль доступа в следующих сферах:

  • Передача и получение конфиденциальной информации личного или коммерческого характера;
  • Регистрация и вход на электронное рабочее место;
  • Осуществление удаленных банковских операций;
  • Защита баз данных и любой конфиденциальной информации на электронных носителях;
  • Пропускные системы в помещения с ограниченным доступом.

Уровень угрозы безопасности со стороны террористов и криминальных элементов привел к широкому использованию биометрических систем защиты и управления контролем доступа не только в государственных организациях или больших корпорациях, но и у частных лиц. В быту наиболее широко такое оборудование применяется в системах доступа и технологиях управления типа «умный дом».

К биометрической системе защиты относятся

Биометрические характеристики являются очень удобным способом аутентификации человека, так как обладают высокой степенью защиты (сложно подделать) и их невозможно украсть, забыть или потерять. Все современные метолы биометрической аутентификации можно разделить на две категории:


  1. Статистические , к ним относят уникальные физиологические характеристики, которые неизменно присутствуют с человеком всю его жизнь. Наиболее распространенный параметр – дактилоскопический отпечаток;
  2. Динамические – основаны на приобретенных поведенческих особенностях. Как правило, выражаются в подсознательных повторяемых движениях при воспроизведении какого либо процесса. Наиболее распространенные – графологические параметры (индивидуальность почерка).

Статистические методы


ВАЖНО! На основании установлено, что в отличии от радужной оболочки глаза сетчатка на протяжении жизни человека может существенно изменяться.

Сканер сетчатки глаза, производство компании LG


Динамические методы


  • Довольно простой метод, для которого не требуется специализированная аппаратура. Часто используется в системах умный дом в качестве командного интерфейса. Для построения голосовых шаблонов используются частотные или статистические параметры голоса: интонация, высота звука, голосовая модуляция и т. д. Для повышения уровня безопасности применяется комбинирование параметров.

Система имеет ряд существенных недостатков, которые делают ее широкое применение нецелесообразным. К основным недостаткам относится:

  • Возможность записи голосового пароля при помощи направленного микрофона злоумышленниками;
  • Низкая вариативность идентификации. У каждого человека голос изменяется не только с возрастом, но и по состоянию здоровья, под воздействием настроения и т.п.

В системах умный дом голосовую идентификацию целесообразно использовать для контроля доступа в помещения со средним уровнем секретности или управления различными приборами: , освещение, система отопления, управление шторами и жалюзями и т.п.

  • Графологическая аутентификация. Основана на анализе рукописного почерка. Ключевым параметром является рефлекторное движение кисти руки при подписании документа. Для снятия информации используются специальные стилусы имеющие чувствительные сенсоры регистрирующие давление на поверхность. В зависимости от требуемого уровня защиты могут сравниваться следующие параметры:
  • Шаблон подписи — сама картинка сверяется с той, что находится в памяти устройства;
  • Динамические параметры – сравнивается скорость подписи с имеющейся статистической информацией.

ВАЖНО! Как правило, в современных системах безопасности и СКУР для идентификации используются сразу несколько методов. К примеру, дактилоскопия с одновременным измерением параметров руки. Такой метод существенно повышает надежность системы и предотвращает возможность подделки.

Видео — Как обезопасить биометрические системы идентификации?

Производители систем защиты информации

На данный момент на рынке биометрических систем, которые может себе позволить рядовой пользователь лидируют несколько компаний.


ZK7500 биометрический USB считыватель отпечатков пальцев используется для контроля доступа в ПК

Использование биометрических систем в бизнесе и не только существенно поднимет уровень безопасности, но и способствует укреплению трудовой дисциплины на предприятии или в офисе. В быту биометрические сканеры применяются гораздо реже из-за их высокой стоимости, но с увеличением предложения большинство этих устройств вскоре станет доступно рядовому пользователю.

Современная наука не стоит на месте. Все чаще и чаще требуется качественная защита для устройств, чтобы тот, кто случайно ими завладел, не смог в полной мере воспользоваться информацией. Кроме этого, методы охраны информации от используются не только в повседневной жизни.

Кроме ввода паролей в цифровом виде, применяются и более индивидуализированные биометрические системы защиты.

Что это такое?

Ранее такая система применялась только в ограниченных случаях, для защиты наиболее важных стратегических объектов.

Затем, после 11 сентября 2011 года, пришли к выводу, что такой и доступа может быть применен не только в этих областях, но и в других сферах.

Таким образом, приемы идентификации человека стали незаменимыми в ряду методов борьбы с мошенничеством и терроризмом, а также в таких областях, как:

Биометрические системы доступа к технологиям связи, сетевым и компьютерным базам;

Базы данных;

Контроль доступа в хранилища информации и др.

У каждого человека есть набор характеристик, которые не меняются со временем, или такие, которые могут модифицироваться, но при этом принадлежать только конкретному лицу. В связи с этим можно выделить следующие параметры биометрических систем, которые используются в этих технологиях:

Статические - отпечатки пальцев, фотографирование ушных раковин, сканирование сетчатки глаза и другие.

Технологии биометрики в перспективе заменят обычные методы аутентификации человека по паспорту, так как встроенные чипы, карты и тому подобные новшества научных технологий будут внедряться не только в данный документ, но и в другие.

Небольшое отступление по поводу способов распознавания личности:

- Идентификация - один ко многим; образец сравнивается со всеми имеющимися по определенным параметрам.

- Аутентификация - один к одному; образец сравнивается с ранее полученным материалом. При этом лицо может быть известно, полученные данные человека сравниваются с имеющимся в базе образцом параметра этого лица;

Как работают биометрические системы защиты

Для того чтобы создать базу под определенного человека, необходимо считать его биологические индивидуальные параметры специальным устройством.

Система запоминает полученный образец биометрической характеристики (процесс записи). При этом, возможно, потребуется сделать несколько образцов для составления более точного контрольного значения параметра. Информация, которая получена системой, преобразовывается в математический код.

Помимо создания образца, система может запросить произвести дополнительные действия для того, чтобы объединить личный идентификатор (ПИН-код или смарт-карту) и биометрический образец. В дальнейшем, когда происходит сканирование на предмет соответствия, система сравнивает полученные данные, сравнивая математический код с уже записанными. Если они совпадают, что это значит, что аутентификация прошла успешно.

Возможные ошибки

Система может выдавать ошибки, в отличии от распознавания по паролям или электронным ключам. В этом случае различают следующие виды выдачи неверной информации:

Ошибка 1 рода: коэффициент ложного доступа (FAR) - одно лицо может быть принято за другое;

Ошибка 2 рода: коэффициент ложного отказа в доступе (FRR) - человек не распознается в системе.

Для того чтобы исключить, к примеру, ошибки данного уровня, необходимо пересечение показателей FAR и FRR. Однако это невозможно, так как для этого нужно было бы проводить идентификацию человека по ДНК.

Отпечатки пальцев

На данный момент наиболее известен метод биометрики. При получении паспорта современные граждане России в обязательном порядке проходят процедуру снятия отпечатков пальцев для внесения их в личную карточку.

Данный метод основан на неповторимости пальцев и используется уже достаточно длительное время, начиная с криминалистики (дактилоскопия). Сканируя пальцы, система переводит образец в своеобразный код, который затем сравнивается с существующим идентификатором.

Как правило, алгоритмы обработки информации используют индивидуальное расположение определенных точек, которые содержат отпечатки пальцев - разветвления, окончание линии узора и т. д. Время, которое занимает перевод изображения в код и выдача результата, обычно составляет около 1 секунды.

Оборудование, в том числе и программное обеспечение для него, производятся на данный момент в комплексе и стоят относительно недорого.

Возникновение ошибок при сканировании пальцев руки (или обеих рук) возникают довольно часто в том случае, если:

Присутствует несвойственная влажность или сухость пальцев.

Руки обработаны химическими элементами, которые затрудняют идентификацию.

Есть микротрещины или царапины.

Имеется большой и непрерывный поток информации. К примеру, это возможно на предприятии, где доступ к рабочему месту осуществляется при помощи дактилоскопа. Так как поток людей значительный, система может давать сбой.

Наиболее известные компании, которые занимаются системами распознавания отпечатков пальцев: Bayometric Inc., SecuGen. В России над этим работают: "Сонда", BioLink, "СмартЛок" и др.

Глазная радужная оболочка

Рисунок оболочки формируется на 36 неделе внутриутробного развития, устанавливается к двум месяцам и не меняется на протяжении жизни. Биометрические системы идентификации по радужной оболочке являются не только наиболее точными среди других в этом ряду, но и одними из самых дорогих.

Преимущество способа состоит в том, что сканирование, то есть захват изображения, может происходить как на расстоянии 10 см, так и на 10-метровом удалении.

При фиксации изображения данные о расположении определенных точек на радужке глаза передаются в вычислитель, который затем выдает информацию о возможности допуска. Скорость обработки сведений о радужке человека составляет около 500 мс.

На данный момент данная система распознавания на биометрическом рынке занимает не более 9% от общего числа таких способов идентификации. В то же время доля рынка, которую занимают технологии по отпечаткам пальцев, составляет более 50%.

Сканеры, позволяющие захватывать и обрабатывать радужку глаза, имеют довольно сложную конструкцию и ПО, а поэтому на такие устройства установлена высокая цена. Кроме этого, монополистом в производстве систем распознавания человека изначально являлась компания Iridian. Затем на рынок стали заходить и другие крупные компании, которые уже занимались производством компонентов различных устройств.

Таким образом, на данный момент в России существуют следующие компании, которые формируют системы распознавания человека по радужке глаза: AOptix, SRI International. Однако данные фирмы не предоставляют показателей по количеству ошибок 1 и 2 рода, поэтому не факт, что что система не защищена от подделок.

Геометрия лица

Существуют биометрические системы безопасности, связанные с распознаванием по лицу в 2D и 3D-режимах. Вообще считается, что черты лица каждого человека уникальны и не меняются в течение жизни. Неизменными остаются такие характеристики, как расстояния между определенными точками, форма и т. д.

2D-режим является статическим способом идентификации. При фиксации изображения необходимо, что человек не двигался. Имеют также значение фон, наличие усов, бороды, яркий свет и другие факторы, которые мешают системе распознать лицо. Это означает, что при любых неточностях выданный результат будет неверным.

На данный момент этот метод не особо популярен из-за своей низкой точности и применяется только в мультимодальной (перекрестной) биометрии, представляющая собой совокупность способов распознавания человека по лицу и голосу одновременно. Биометрические системы защиты могут включать в себя и другие модули - по ДНК, отпечаткам пальцев и другие. Кроме этого, перекрестный способ не требует контакта с человеком, которого необходимо идентифицировать, что позволяет распознавать людей по фотографии и голосу, записанных на технические устройства.

3D-метод имеет совершенно другие входящие параметры, поэтому нельзя его сравнивать с 2D-технологией. При записывании образа используется лицо в динамике. Система, фиксируя каждое изображение, создает 3D-модель, с которой затем сравниваются полученные данные.

В этом случае используется специальная сетка, которая проецируется на лицо человека. Биометрические системы защиты, делая несколько кадров в секунду, обрабатывают изображение входящим в них программным обеспечением. На первом этапе создания образа ПО отбрасывает неподходящие изображения, где плохо видно лицо или присутствуют вторичные предметы.

Затем программа определяет и игнорирует лишние предметы (очки, прическа и др.). Антропометрические особенности лица выделяются и запоминаются, генерируя уникальный код, который заносится в специальное хранилище данных. Время захвата изображения составляет около 2 секунд.

Однако, несмотря на преимущество метода 3D перед 2D-способом, любые существенные помехи на лице или изменение мимики ухудшают статистическую надежность данной технологии.

На сегодняшний день биометрические технологии распознавания по лицу применяются наряду с наиболее известными вышеописанными методами, составляя приблизительно 20% всего рынка биометрических технологий.

Компании, которые занимаются разработкой и внедрением технологии идентификации по лицу: Geometrix, Inc., Bioscrypt, Cognitec Systems GmbH. В России над этим вопросом работают следующие фирмы: Artec Group, Vocord (2D-метод) и другие, менее крупные производители.

Вены ладони

Лет 10-15 назад пришла новая технология биометрической идентификации - распознавание по венам руки. Это стало возможным благодаря тому, что гемоглобин, находящийся в крови, интенсивно поглощает инфракрасное излучение.

Специальная камера ИК фотографирует ладонь, в результате чего на снимке появляется сетка вен. Данное изображение обрабатывается ПО, и выдается результат.

Расположение вен на руке сравнимо с особенностями радужки глаза - их линии и структура не меняются со временем. Достоверность данного метода тоже можно соотнести с результатами, полученными при идентификации при помощи радужной оболочки.

Контактировать для захвата изображения считывающим устройством не нужно, однако использование этого настоящего метода требует соблюдения некоторых условий, при которых результат будет наиболее точным: невозможно получить его, если, к примеру, сфотографировать руку на улице. Также во время сканирования нельзя засвечивать камеру. Конечный результат будет неточным, если имеются возрастные заболевания.

Распространение метода на рынке составляет всего около 5%, однако к нему проявляется большой интерес со стороны крупных компаний, которые уже разрабатывали биометрические технологии: TDSi, Veid Pte. Ltd., Hitachi VeinID.

Сетчатка глаза

Сканирование рисунка капилляров на поверхности сетчатки считается самым достоверным методом идентификации. Он сочетает в себе наилучшие характеристики биометрических технологий распознавания человека по радужке глаз и венам руки.

Единственный момент, когда метод может дать неточные результаты - катаракта. В основном же сетчатка имеет неизменяемую структуру на протяжении всей жизни.

Минус этой системы заключается в том, что сканирование сетчатки глаза производится тогда, когда человек не двигается. Сложная по своему применению технология предусматривает длительное время обработки результатов.

Ввиду высокой стоимости биометрическая система не имеет достаточного распространения, однако дает самые точные результаты из всех предложенных на рынке методов сканирования человеческих особенностей.

Руки

Ранее популярный способ идентификации по геометрии рук становится менее применяемым, так как дает наиболее низкие результаты по сравнению с другими методиками. При сканировании фотографируются пальцы, определяются их длина, соотношение между узлами и другие индивидуальные параметры.

Форма ушей

Специалисты говорят о том, что все существующие методы идентификации не настолько точны, как распознавание человека по Однако есть способ определения личности по ДНК, но в этом случае происходит тесный контакт с людьми, поэтому его считают неэтичным.

Исследователь Марк Никсон из Великобритании заявляет, что методы данного уровня - биометрические системы нового поколения, они дают самые точные результаты. В отличии от сетчатки, радужки или пальцев, на которых могут с большой долей вероятности появиться посторонние параметры, затрудняющие идентификацию, на ушах такого не бывает. Сформированное в детстве, ухо только растет, не изменяясь по своим основным точкам.

Метод идентификации человека по органу слуха изобретатель назвал «лучевое преобразование изображения». Данная технология предусматривает захват изображения лучами разного цвета, что затем переводится в математический код.

Однако, по словам ученого, у его метода существуют и отрицательные стороны. К примеру, получению четкого изображения могут помешать волосы, которые закрывают уши, ошибочно выбранный ракурс и другие неточности.

Технология сканирования уха не заменит собой такой известный и привычный способ идентификации, как отпечатки пальцев, однако может использоваться наряду с ним.

Полагают, что это увеличит надежность распознавания людей. Особенно важной является совокупность различных методов (мультимодальная) в поимке преступников, считает ученый. В результате опытов и исследований надеются создать ПО, которое будет использоваться в суде для однозначной идентификации виновных лиц по изображению.

Голос человека

Идентификация личности может быть проведена как на месте, так и удаленным способом, при помощи технологии распознавания голоса.

При разговоре, к примеру, по телефону, система сравнивает данный параметр с имеющимися в базе и находит похожие образцы в процентном отношении. Полное совпадение означает, что личность установлена, то есть произошла идентификация по голосу.

Для того чтобы получить доступ к чему-либо традиционным способом, необходимо ответить на определенные вопросы, обеспечивающие безопасность. Это цифровой код, девичья фамилия матери и другие текстовые пароли.

Современные исследование в данной области показывают, что этой информацией довольно легко завладеть, поэтому могут применяться такие способы идентификации, как голосовая биометрия. При этом проверке подлежит не знание кодов, а личность человека.

Для этого клиенту нужно произнести какую-либо кодовую фразу или начать разговаривать. Система распознает голос звонящего и проверяет его принадлежность этому человеку - является ли он тем, за кого себя выдает.

Биометрические системы защиты информации данного типа не требуют дорогостоящего оборудования, в этом заключается их преимущество. Кроме этого, для проведения сканирования голоса системой не нужно иметь специальных знаний, так как устройство самостоятельно выдает результат по типу "истина - ложь".

По почерку

Идентификация человека по способу написания букв имеет место практически в любой сфере жизни, где необходимо ставить подпись. Это происходит, к примеру, в банке, когда специалист сличает образец, сформированный при открытии счета, с подписями, проставленными при очередном посещении.

Точность этого способа невысокая, так как идентификация происходит не с помощью математического кода, как в предыдущих, а простым сравнением. Здесь высок уровень субъективного восприятия. Кроме этого, почерк с возрастом сильно меняется, что зачастую затрудняет распознавание.

Лучше в этом случае использовать автоматические системы, которые позволят определить не только видимые совпадения, но и другие отличительные черты написания слов, такие как наклон, расстояние между точками и другие характерные особенности.

Биометрические системы аутентификации - системы аутентификации , использующие для удостоверения личности людей их биометрические данные.

Биометрическая аутентификация - процесс доказательства и проверки подлинности заявленного пользователем имени, через предъявление пользователем своего биометрического образа и путём преобразования этого образа в соответствии с заранее определенным протоколом аутентификации .

Не следует путать данные системы с системами биометрической идентификации , каковыми являются к примеру системы распознавания лиц водителей и биометрические средства учёта рабочего времени . Биометрические системы аутентификации работают в активном, а не пассивном режиме и почти всегда подразумевают авторизацию . Хотя данные системы не идентичны системам авторизации, они часто используются совместно (например, в дверных замках с проверкой отпечатка пальца).

Энциклопедичный YouTube

    1 / 4

    Биометрическая аутентификация в службе каталогов Active Directory

    ЦРТ-Инновации. Биометрические системы идентификации

    Биометрическая аутентификация Windows Hello

    # РЕЖИМ ГЛОБАЛИЗАЦИИ # БИОМЕТРИЧЕСКАЯ СИСТЕМА #

    Субтитры

Методы аутентификации

Различные системы контролируемого обеспечения доступа можно разделить на три группы в соответствии с тем, что человек собирается предъявлять системе:

1) Парольная защита. Пользователь предъявляет секретные данные (например, PIN-код или пароль).

1. Всеобщность: Данный признак должен присутствовать у всех людей без исключения.

2. Уникальность : Биометрия отрицает существование двух людей с одинаковыми физическими и поведенческими параметрами.

3. Постоянство: для корректной аутентификации необходимо постоянство во времени.

4. Измеряемость: специалисты должны иметь возможность измерить признак каким-либо устройством для дальнейшего занесения в базу данных.

5. Приемлемость: общество не должно быть против сбора и измерения биометрического параметра.

Статические методы

Аутентификация по отпечатку пальца

Идентификация по отпечаткам пальцев - самая распространенная биометрическая технология аутентификации пользователей. Метод использует уникальность рисунка папиллярных узоров на пальцах людей. Отпечаток , полученный с помощью сканера, преобразовывается в цифровой код , а затем сравнивается с ранее введенными наборами эталонов. Преимущества использования аутентификации по отпечаткам пальцев - легкость в использовании, удобство и надежность. Универсальность этой технологии позволяет применять её в любых сферах и для решения любых и самых разнообразных задач, где необходима достоверная и достаточно точная идентификация пользователей.

Для получения сведений об отпечатках пальцев применяются специальные сканеры. Чтобы получить отчётливое электронное представление отпечатков пальцев, используют достаточно специфические методы, так как отпечаток пальца слишком мал, и очень трудно получить хорошо различимые папиллярные узоры.

Обычно применяются три основных типа сканеров отпечатков пальцев: ёмкостные, прокатные, оптические. Самые распространенные и широко используемые это оптические сканеры, но они имеют один серьёзный недостаток. Оптические сканеры неустойчивы к муляжам и мертвым пальцам, а это значит, что они не столь эффективны, как другие типы сканеров. Так же в некоторых источниках сканеры отпечатков пальцев делят на 3 класса по их физическим принципам: оптические, кремниевые, ультразвуковые [ ] [ ] .

Аутентификация по радужной оболочке глаза

Данная технология биометрической аутентификации личности использует уникальность признаков и особенностей радужной оболочки человеческого глаза. Радужная оболочка - тонкая подвижная диафрагма глаза у позвоночных с отверстием (зрачком) в центре; расположена за роговицей , между передней и задней камерами глаза, перед хрусталиком . Радужная оболочка образовывается ещё до рождения человека, и не меняется на протяжении всей жизни. Радужная оболочка по текстуре напоминает сеть с большим количеством окружающих кругов и рисунков, которые могут быть измерены компьютером, рисунок радужки очень сложен, это позволяет отобрать порядка 200 точек, с помощью которых обеспечивается высокая степень надежности аутентификации. Для сравнения, лучшие системы идентификации по отпечаткам пальцев используют 60-70 точек.

Технология распознавания радужной оболочки глаза была разработана для того, чтобы свести на нет навязчивость сканирования сетчатки глаза, при котором используются инфракрасные лучи или яркий свет. Ученые также провели ряд исследований, которые показали, что сетчатка глаза человека может меняться со временем, в то время как радужная оболочка глаза остается неизменной. И самое главное, что невозможно найти два абсолютно идентичных рисунка радужной оболочки глаза, даже у близнецов. Для получения индивидуальной записи о радужной оболочке глаза черно-белая камера делает 30 записей в секунду. Еле различимый свет освещает радужную оболочку, и это позволяет видеокамере сфокусироваться на радужке. Одна из записей затем оцифровывается и сохраняется в базе данных зарегистрированных пользователей. Вся процедура занимает несколько секунд, и она может быть полностью компьютеризирована при помощи голосовых указаний и автофокусировки. Камера может быть установлена на расстоянии от 10 см до 1 метра, в зависимости от сканирующего оборудования. Термин «сканирование» может быть обманчивым, так как в процессе получения изображения проходит не сканирование, а простое фотографирование. Затем полученное изображение радужки преобразуется в упрощенную форму, записывается и хранится для последующего сравнения. Очки и контактные линзы, даже цветные, не воздействуют на качество аутентификации . [ ] [ ] .

Стоимость всегда была самым большим сдерживающим моментом перед внедрением технологии, но сейчас системы идентификации по радужной оболочке становятся более доступными для различных компаний. Сторонники технологии заявляют о том, что распознавание радужной оболочки глаза очень скоро станет общепринятой технологией идентификации в различных областях.

Аутентификация по сетчатке глаза

Аутентификация по геометрии руки

В этом биометрическом методе для аутентификации личности используется форма кисти руки. Из-за того, что отдельные параметры формы руки не являются уникальными, приходится использовать несколько характеристик. Сканируются такие параметры руки, как изгибы пальцев, их длина и толщина, ширина и толщина тыльной стороны руки , расстояние между суставами и структура кости. Также геометрия руки включает в себя мелкие детали (например, морщины на коже). Хотя структура суставов и костей являются относительно постоянными признаками, но распухание тканей или ушибы руки могут исказить исходную структуру. Проблема технологии: даже без учёта возможности ампутации, заболевание под названием «артрит » может сильно помешать применению сканеров.

С помощью сканера, который состоит из камеры и подсвечивающих диодов (при сканировании кисти руки, диоды включаются по очереди, это позволяет получить различные проекции руки), затем строится трёхмерный образ кисти руки. Надежность аутентификации по геометрии руки сравнима с аутентификацией по отпечатку пальца.

Системы аутентификации по геометрии руки широко распространены, что является доказательством их удобства для пользователей. Использование этого параметра привлекательно по ряду причин. Процедура получения образца достаточно проста и не предъявляет высоких требований к изображению. Размер полученного шаблона очень мал, несколько байт. На процесс аутентификации не влияют ни температура , ни влажность , ни загрязнённость. Подсчеты, производимые при сравнении с эталоном, очень просты и могут быть легко автоматизированы .

Системы аутентификации, основанные на геометрии руки, начали использоваться в мире в начале 70-х годов . [ ] [ ]

Аутентификация по геометрии лица

Биометрическая аутентификация человека по геометрии лица довольно распространенный способ идентификации и аутентификации . Техническая реализация представляет собой сложную математическую задачу. Обширное использование мультимедийных технологий , с помощью которых можно увидеть достаточное количество видеокамер на вокзалах, аэропортах, площадях, улицах, дорогах и других местах скопления людей, стало решающим в развитии этого направления. Для построения трёхмерной модели человеческого лица, выделяют контуры глаз, бровей, губ, носа, и других различных элементов лица, затем вычисляют расстояние между ними, и с помощью него строят трёхмерную модель. Для определения уникального шаблона, соответствующего определенному человеку, требуется от 12 до 40 характерных элементов. Шаблон должен учитывать множество вариаций изображения на случаи поворота лица, наклона, изменения освещённости, изменения выражения. Диапазон таких вариантов варьируется в зависимости от целей применения данного способа (для идентификации, аутентификации, удаленного поиска на больших территориях и т. д.). Некоторые алгоритмы позволяют компенсировать наличие у человека очков, шляпы, усов и бороды . [ ] [ ]

Аутентификация по термограмме лица

Способ основан на исследованиях, которые показали, что термограмма лица уникальна для каждого человека. Термограмма получается с помощью камер инфракрасного диапазона . В отличие от аутентификации по геометрии лица, данный метод различает близнецов. Использование специальных масок, проведение пластических операций, старение организма человека, температура тела, охлаждение кожи лица в морозную погоду не влияют на точность термограммы. Из-за невысокого качества аутентификации, метод на данный момент не имеет широкого распространения .

Динамические методы

Аутентификация по голосу

Биометрический метод аутентификации по голосу , характеризуется простотой в применении. Данному методу не требуется дорогостоящая аппаратура, достаточно микрофона и звуковой платы . В настоящее время данная технология быстро развивается, так как этот метод аутентификации широко используется в современных бизнес-центрах. Существует довольно много способов построения шаблона по голосу. Обычно, это разные комбинации частотных и статистических характеристик голоса. Могут рассматриваться такие параметры, как модуляция , интонация , высота тона, и т. п.

Основным и определяющим недостатком метода аутентификации по голосу - низкая точность метода. Например, человека с простудой система может не опознать. Важную проблему составляет многообразие проявлений голоса одного человека: голос способен изменяться в зависимости от состояния здоровья, возраста, настроения и т. д. Это многообразие представляет серьёзные трудности при выделении отличительных свойств голоса человека. Кроме того, учёт шумовой компоненты является ещё одной важной и не решенной проблемой в практическом использовании аутентификации по голосу. Так как вероятность ошибок второго рода при использовании данного метода велика (порядка одного процента), аутентификация по голосу применяется для управления доступом в помещениях среднего уровня безопасности, такие как компьютерные классы, лаборатории производственных компаний и т. д.

Михайлов Алексей Алексеевич
начальник сектора отдела ФКУ НИЦ «Охрана» МВД России, подполковник полиции,

Колосков Алексей Анатольевич
старший научный сотрудник ФКУ НИЦ «Охрана» МВД России, подполковник,

Дронов Юрий Иванович
старший научный сотрудник ФКУ НИЦ «Охрана» МВД России

ВСТУПЛЕНИЕ

В настоящее время наблюдается бурное развитие биометрических систем контроля и допуска (далее биометрии) как за рубежом, так и в России. Действительно, использование биометрии для целей охраны чрезвычайно привлекательно. Любой ключ, таблетку - TouchMemory, Proxy-карту или другой материальный идентификатор можно украсть, сделать дубликат и таким образом получить доступ к объекту охраны.

Цифровой ПИН-код (вводится человеком с помощью клавиатуры) можно зафиксировать с помощью банальной видеокамеры, и потом есть возможность шантажа человека или угрозы физического воздействия на него с целью получения значения кода. Редко кто из читателей, на собственном опыте или на опыте своих знакомых, не сталкивался с таким способом мошенничества. Появился даже термин, обозначающий данный способ изъятия честно заработанных денег у граждан, - скимминг (от англ. skim - снимать сливки).

Биометрический идентификатор невозможно украсть или получить путем шантажа, что делает в перспективе его очень привлекательным для целей охраны и доступа. Правда, можно попытаться создать имитатор биологического признака человека, но тут должна проявить себя в полной мере биометрическая система и отвергнуть подделку.

Вопрос «обхода» биометрических систем - это большая и отдельная тема, и в рамках этой статьи мы не будем ее затрагивать, да и создать имитатор биологического признака человека - непростая задача.

Особенно отрадно отметить активное развитие данного направления охранной техники в России. Например, «Русское общество содействия развитию биометрических технологий, систем и коммуникаций» существует с 2002 года.

Существует и технический комитет по стандартизации ТК 098 «Биометрия и биомониторинг», который работает достаточно плодотворно (выпущено более 30 ГОСТ, см.: http://www.rusbiometrics.com/), но нас, как пользователей, больше всего интересует ГОСТ Р ИСО/МЭК19795-1-2007 «Автоматическая идентификация. Идентификация биометрическая. Эксплуатационные испытания и протоколы испытаний в биометрии. Часть 1. Принципы и структура».

ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Для того чтобы понимать, о чем пишут в нормативных документах, необходимо определиться в терминах и определениях. Чаще всего по своему физическому принципу пишут об одном и том же, но называют совершенно иначе. Итак, о наиболее значимых параметрах в биометрии:

VERIFICATION (верификация) - процесс, при котором происходит сравнение представленного пользователем образца с шаблоном, зарегистрированным в базе данных (ГОСТ Р ИСО/МЭК19795-1-2007). Здесь принципиальным является, что один образец сравнивается с одним шаблоном (сравнение один к одному с биометрическим шаблоном), поэтому любая биометрическая система будет иметь лучшие показатели для верификации по сравнению с идентификацией.

IDENTIFICATION (идентификация) - процесс, при котором осуществляется поиск в регистрационной базе данных и предоставляется список кандидатов, содержащих от нуля до одного или более идентификаторов (ГОСТ Р ИСО/МЭК19795-1-2007). Здесь принципиальным является, что один образец сравнивается со многими шаблонами (сравнение один ко многим), и ошибка системы многократно возрастает. Идентификация становится наиболее критичным параметром для систем биометрии, основанной на распознавании характерных черт лица человека. Для машины лица людей практически идентичны.

FAR (False Acceptance Rate) - вероятность несанкционированного допуска (ошибка первого рода), выраженное в процентах число допусков системой неавторизованных лиц (имеется в виду верификация). Вероятностные параметры выражаются или в абсолютных величинах (10-5), для параметра FAR это означает, что 1 человек из 100 тыс. будет несанкционированно допущен, в процентах данное значение будет (0,001%).

ВЛД - вероятность ложного допуска (FAR), (ГОСТ Р ИСО/МЭК19795-1-2007).

FRR (False Rejection Rate) - вероятность ложного задержания (ошибка второго рода), выраженное в процентах число отказов в допуске системой авторизованных лиц (имеется в виду верификация).

ВЛНД - вероятность ложного недопуска (FRR), (ГОСТ Р ИСО/МЭК19795-1-2007).

FMR (False Match Rate) - вероятность ложного совпадения параметров. Где-то мы это уже читали, см. FAR, но в данном случае один образец сравнивается со многими шаблонами, заложенными в базу данных, т.е. происходит идентификация.

ВЛС - вероятность ложного совпадения (FMR), (ГОСТ Р ИСО/МЭК19795-1-2007).

FNMR (False Non-Match Rate) - вероятность ложного несовпадения параметров, в данном случае один образец сравнивается со многими шаблонами, заложенными в базу данных, т.е. происходит идентификация.

ВЛНС - вероятность ложного несовпадения (FNMR), (ГОСТ Р ИСО/МЭК19795-1-2007).

Параметры (как и остальные перечисленные выше) взаимосвязаны (рис. 1). Меняя порог FAR и FRR - «чувствительности» биометрической системы, мы одновременно изменяем их, выбирая требуемое соотношение. Действительно, можно так настроить биометрическую систему, что она с большой долей вероятности будет пропускать зарегистрированных пользователей, но и с достаточной долей вероятности будет пропускать и незарегистрированных пользователей. Поэтому данные параметры должны быть указаны одновременно для биометрической системы.

Рис. 1. Графики FAR и FRR

Если указывается только один параметр, то вас, как пользователя, это должно насторожить, поскольку таким образом очень легко завысить параметры в сравнении с конкурентом. Утрируя, можно сказать, что самый низкий коэффициент FAR будет иметь неработающая система, уж точно она никого несанкционированно не допустит.

Более или менее объективным параметром биометрической системы является коэффициент EER.

Коэффициент EER (равный уровень ошибок) - это коэффициент, при котором обе ошибки (ошибка приема и ошибка отклонения) эквивалентны. Чем ниже коэффициент EER, тем выше точность биометрической системы.

Для параметров FMR и FNMR строят аналогичный график (рис. 2). Обратите внимание, что этот график всегда должен иметь привязку к объему базы данных (обычно числа выбирают с шагом 100, 1000, 10000 шаблонов и т.д.).

Рис. 2. Графики FMR и FNMR

КОО - кривая компромиссного определения ошибки (англ. DET - detection error trade-off curve; DET curve). Модифицированная кривая рабочей характеристики, по осям которой отложены вероятности ошибки (ложноположительная - по оси X и ложноотрицательная - по оси У), (ГОСТ Р ИСО/МЭК19795-1-2007).

Кривую КОО (DET) используют для построения графика вероятностей ошибок сравнения (ВЛНС (FNMR) в зависимости от ВЛС (FMR)), вероятностей ошибок принятия решения (ВЛНД (FRR) в зависимости от ВЛД (FAR)) (рис. 3-4) и вероятностей идентификации на открытом множестве (ВЛОИ в зависимости от ВЛПИ), (ГОСТ Р ИСО/МЭК19795-1-2007).

Рис. 3. График DET

Рис. 4. Пример кривых КОО (ГОСТ Р ИСО/МЭК19795-1-2007)

Графики, отображающие качество работы биометрических систем, достаточно многочисленны, иногда создается впечатление, что их назначение - запутать доверчивого пользователя. Существуют еще РХ -кривая рабочей характеристики (англ. ROC - receiver operating characteristic curve) (рис. 5-6), и, конечно, вы понимаете, что это далеко не последние кривые и зависимости, которые существуют в биометрии, но для ясности вопроса не будем на них останавливаться.

Рис. 5. Пример набора кривых РХ (ГОСТ Р ИСО/МЭК19795-1-2007)

Рис. 6. Пример ROC-кривой

Кривые РХ (ROC) не зависят от порога, что позволяет проводить сравнение эксплуатационных характеристик различных биометрических систем, используемых в аналогичных условиях, или одной биометрической системы, используемой в различных условиях окружающей среды.

Кривые РХ (ROC) используют для изображения эксплуатационных характеристик алгоритма сравнения (1 - ВЛНС в зависимости от ВЛС), (1 - FNMR в зависимости от FMR), эксплуатационных характеристик биометрических систем верификации (1 - ВЛНД в зависимости от ВЛД), (1 - FRR в зависимости от FAR), а также эксплуатационных характеристик биометрических систем идентификации на открытом множестве (вероятность идентификации в зависимости от ВЛПИ).

Примечание: ВЛПИ - вероятность ложноположительной идентификации (англ. FPIR - false-positive identification-error rate), т.е. доля транзакций идентификации незарегистрированных в системе пользователей, в результате которых возвращается идентификатор (ГОСТ Р ИСО/МЭК19795-1-2007).

1) Параметры FAR (ВЛД), FRR (ВЛНД) и FMR (ВЛС) FNMR (ВЛРС) имеет смысл рассматривать только в совокупности.

2) Чем ниже коэффициент EER, тем выше точность биометрической системы.

3) Хорошим тоном для биометрической системы является наличие графиков DET (КОО) и ROC (РХ).

ГРАНИЦЫ ПАРАМЕТРОВ FAR И FRR БИОМЕТРИЧЕСКИХ СИСТЕМ

Теперь давайте прикинем, какие параметры FAR и FRR должны быть у биометрических систем. Обратимся за аналогией к требованиям для цифрового кодонаборни-ка. Согласно ГОСТ число значимых десятичных цифр должно быть не менее 6, т.е. диапазон 0-999999, или 107 вариантов кода. Тогда вероятность FAR - 10-7, а вероятность FRR определяется работоспособностью системы, т.е. стремится к нулю.

В банкоматах используется 4-разрядный десятичный код (что не соответствует ГОСТ), и тогда FAR будет составлять 10-5. Возьмем FAR= 10-5 за определяющий параметр. Какое значение можно взять за приемлемое для FRR? Это зависит от задач биометрической системы, но нижняя граница должна находиться в диапазоне 10-2, т.е. вас, как легального пользователя, система не допустит только один раз из ста попыток. Для систем с большой пропускной способностью, например, проходная завода, это значение должно быть 10-3, иначе не понятно назначение биометрии, если мы не избавились от «человеческого» фактора.

Многие биометрические системы заявляют похожие и даже на порядок лучшие характеристики, но поскольку наши величины являются вероятностными, то необходимо указывать доверительный интервал этой величины. С этого момента производители биометрии предпочитают не вдаваться в подробности и не указывать данный параметр.

Если методика расчета, схема эксперимента и доверительный интервал не указаны, то по умолчанию подразумевается действие правила «тридцати», которое выдвинул J. F. Poter в работе «On the 30 error criterion)) (1997).

Об этом же говорит и ГОСТ Р ИСО/ МЭК19795-1-2007. В правиле «тридцати» утверждается, что для того, чтобы с доверительной вероятностью 90% истинная вероятность ошибки находилась в диапазоне ±30% от установленной вероятности ошибки, должно быть зарегистрировано не менее 30 ошибок. Например, если получены 30 ошибок ложного несоответствия в 3000 независимых испытаниях, можно с доверительной вероятностью 90% утверждать, что истинная вероятность ошибки находится в диапазоне от 0,7% до 1,3%. Правило следует непосредственно из биноминального распределения при независимых испытаниях и может применяться с учетом ожидаемых эксплуатационных характеристик для выполнения оценки.

После этого следует логичный вывод: чтобы получить величину ложного доступа в 10-5, нужно провести 3х106 опытов, что практически невозможно осуществить физически при реальном тестировании биометрической системы. Вот тут нас начинают мучить смутные сомнения.

Остается надеяться, что такое тестирование было проведено в лаборатории путем сравнения шаблонов вводимых биометрических признаков с шаблонами базы данных системы. Лабораторные испытания позволяют достаточно корректно оценить надежность заложенных алгоритмов обработки данных, но не реальную работу системы. Лабораторные испытания исключают такие воздействия на биометрическую систему, как электромагнитные наводки (актуально для всех систем биометрии), за-пыление или загрязнение контактных или дистанционных устройств считывания биометрического параметра, реальное поведение человека при взаимодействии с устройствами биометрии, недостаток или избыток освещения, периодическое изменение освещенности и т.д., да мало ли, что еще может повлиять на такую сложную систему, как система биометрии. Если бы человек мог заранее предугадать все негативно-действующие факторы, то можно было бы и не проводить натурные испытания.

Из опыта работы с другими охранными системами можем утверждать, что даже эксплуатация охранной системы в течение 45 суток не выявляет большинство скрытых проблем, и только опытная эксплуатация в течение 1-1,5 лет позволяет их устранить. У разработчиков существует даже термин - «детские болезни». Любая система должна ими переболеть.

Таким образом, кроме лабораторных испытаний необходимо проводить и натурные испытания, естественно, что оценки доверительных интервалов при меньшем количестве опытов должны оцениваться по другим методикам.

Обратимся к учебнику Е.С. Вентцель «Теория вероятностей» (М.: «Наука», 1969. С. 334), который утверждает, если вероятность Р очень велика или очень мала (что несомненно соответствует реальным результатам измерения вероятностей для биометрических систем), доверительный интервал строят, исходя не из приближенного, а из точного закона распределения частоты. Нетрудно убедиться, что это есть биномиальное распределение. Действительно, число появлений события А в n-опытах распределено по биномиальному закону: вероятность того, что событие А появится ровно m раз, равна

а частота р* есть не что иное, как число появлений события, деленное на число опытов.

В данном труде приводится графическая зависимость доверительного интервала от количества проведенных опытов (рис. 7) для доверительной вероятности b = 0,9.

Рис. 7. Графическая зависимость доверительного интервала от количества проведенных опытов

Рассмотрим пример. Мы провели 100 натурных опытов, из которых получили вероятность события равную 0,7. Тогда по оси абсцисс откладываем значение частоты р* = 0,7, проводим через эту точку прямую, параллельную оси ординат, и отмечаем точки пересечения прямой с парой кривых, соответствующих данному числу опытов n = 100; проекции этих точек на ось ординат и дадут границы р1 = 0,63, р2 = 0,77 доверительного интервала.

Для тех случаев, когда точность построения графического метода недостаточна, можно воспользоваться достаточно детальными табличными зависимостями (рис. 8) доверительного интервала, приведенными в труде И.В. Дунина-Барковского и Н.В. Смирнова «Теория вероятностей и математическая статистика в технике» (М.: Государственное издательство технико-теоретической литературы, 1955). В данной таблице х-числитель, n-знаменатель частости. Вероятности умножены на 1000.

Рассмотрим пример. Мы провели 204 натурных опытов, из которых событие произошло 4 раза. Вероятность Р = 4/204 = 0,0196, границы доверительного интервала р1 = 0,049, р2= 0,005.

Теоретически подразумевается, что заявленные в документации параметры должны быть подтверждены сертификатами. Однако в России почти во всех областях жизни действует институт добровольной сертификации, поэтому сертифицируют на те требования, на которые хотят или могут получать сертификат.

Берем первый попавшийся сертификат на биометрическую систему, и видим 6 наименований ГОСТ, из которых ни один не содержит перечисленные выше параметры. Слава богу, что они хоть относятся к охранной технике и нормам безопасности. Это еще не самый худший вариант, приходилось встречать приемники и передатчики радиосистем передачи данных (РСПИ), сертифицированные как электрические машины.

Рис. 8. Фрагмент табличной зависимости доверительного интервала от количества проведенных опытов для доверительной вероятности b = 0,95

САМОЕ ГЛАВНОЕ ИЗ ПЕРЕЧИСЛЕННОГО

1) Параметры FAR (ВЛД) должны быть не ниже 10-5, а FRR (ВЛНД) должны находиться в диапазоне 10"2-10"3.

2) Не стоит безоговорочно доверять указанным в документации вероятностным параметрам, их можно воспринимать только как ориентир.

3) Кроме лабораторных испытаний необходимо проводить и натурные испытания биометрических систем.

4) Необходимо попытаться получить от разработчика, производителя, продавца как можно больше информации о реальных биометрических параметрах системы и методике их получения.

5) Не ленитесь расшифровывать, на какие ГОСТ(ы) и пункты ГОСТ(ов) сертифицирована биометрическая система.

В продолжение начатой темы о реальных системах биометрической идентификации предлагаем поговорить в статье «Основные биометрические системы».

ЛИТЕРАТУРА

  1. http://www.1zagran.ru
  2. http://fingerprint.com.ua/
  3. http://habrahabr.ru/post/174397/
  4. http://sonda.ru/
  5. http://eyelock.com/index.php/ products/hbox
  6. http://www.bmk.spb.ru/
  7. http://www.avtelcom.ru/
  8. http://www.nec.com/en/global/ solutions/security/products/ hybrid_finger.html
  9. http://www.ria-stk.ru/mi «Мир измерений» 3/2014
  10. http://www.biometria.sk/ru/ principles-of-biometrics.html
  11. http://www.biometrics.ru
  12. http://www.guardinfo.ru/«Система физической защиты (СФЗ) ядерных материалов и ядерно-опасных объектов»
  13. http://cbsrus.ru/
  14. http: www.speechpro.ru
  15. Poter J F. On the 30 error criterion. 1997.
  16. ГОСТ Р ИСО/МЭК19795-1-2007. Автоматическая идентификация. Идентификация биометрическая. Эксплуатационные испытания и протоколы испытаний в биометрии. Часть 1. Принципы и структура.
  17. Болл Р.М., Коннел Дж. Х., Ратха Н.К., Сеньор Э.У. Руководство по биометрии. М.: ЗАО «РИЦ Техносфера», 2006.
  18. Симончик К.К., Белевитин Д.О., Матвеев Ю.Н., Дырмовский Д.В. Доступ к интернет-банкингу на основе бимодальной биометрии // Мир измерений. 2014. № 3.
  19. 19. Дунин-Барковский И.В., Смирнов Н.В. Теория вероятностей и математическая статистика в технике. М.: Государственное издательство технико-теоретической литературы, 1955.

Биометрическими системами аутентификации называются системы, предназначенные для удостоверения личности пользователя на основе его биометрических данных. Такие системы максимально эффективно справляются с предоставлением доступа в особо охраняемые зоны, где нет возможности выставить персональную охрану по тем или иным соображениям. Их можно комбинировать с система автоматического оповещения, сигнализации и охранными системами.

Методы биометрической идентификации (аутентификации)

На сегодняшний день существует и используется множество методов биометрической аутентификации (идентификации). Они делятся на два вида.

  1. Статистические методы. Основаны на уникальных (физиологических) характеристиках, которые не меняются на протяжении человеческой жизни и никак не могут быть утеряны. Также исключено копирование мошенниками.
  2. Динамические методы. Основываются на характеристиках обыденного поведения определенного человека. Менее распространены, чем статические и практически не используются.

Статистические

  • По отпечатку пальца – метод распознавания уникальности папиллярных линий (узоров) на пальце человека. Система при помощи сканера получает отпечаток, затем оцифровывает его и после этого сравнивает с ранее введенными шаблонами (наборами рисунков).
  • По сетчатке глаза – метод сканирования и распознавания уникального рисунка кровеносных сосудов глазного дна человека. Для такой процедуры используется излучение низкой интенсивности. Излучение через зрачок направляется к кровеносным сосудам, которые находятся на задней стенке глаза. Из получаемого сигнала выделяются особые точки, информация о которых хранится в шаблоне системы.
  • По радужной оболочке глаза – метод определения человеческой уникальности особенностей оболочки. Данная технология разработана для минимизации сканирования сетчатки глаза, так как при нем используются инфракрасные лучи и ярки свет, которые негативно влияют на здоровье глаза.
  • Геометрия руки – форма кисти. При помощи этого метода используется несколько характеристик, поскольку отдельные параметры не являются уникальными. Сканируются: тыльная сторона руки, пальцев (толщина, длина, изгибы) а также структура костей и суставов.
  • Геометрия лица – метод сканирования, при котором выделяются контуры бровей и глаз, губ и носа, а также иных элементов лица. После этого вычисляется расстояние между этими элементами и строится трехмерная модель лица. Требуется от двенадцати до сорока определенных элементов, характерных для определенного человека, чтоб создать и воссоздать уникальный шаблон.
  • По термограмме лица – уникальное распределение температурных полей на лице. Используется с помощью инфракрасных камер. Из-за откровенно невысокого качества подобные системы широко не распространены.

Динамические

  • По голосу – простой в применении метод с использованием лишь аудиокарты и микрофона. На сегодняшний день для такой системы существует множество способов построения шаблонов. Широко используется в бизнес-центрах.
  • По почерку – основан на специфическом движении руки во время росписи (подписания документов и так далее). Для создания шаблонов и сохранения используются специальные, восприимчивые к давлению ручки.

Комбинированные (мультимодальные)

Подобные методы применяются в сложных, строгих и комплексных системах безопасности. В таких случаях используются несколько типов биометрических характеристик человека (пользователя), которые соединяются в одной системе.

Биометрические системы безопасности

Суть биометрических систем безопасности в доказательстве, что Вы – это Вы. Эти системы исключают возможность того, что сама система может принять Вас за кого-то другого. В силу уникальности человеческих характеристик, биометрические системы используются для предотвращения различных видов мошенничества, взлома и нежелательного доступа.

Биометрические системы безопасности могут работать в двух режимах, в зависимости о того, что пользователь собирается предоставить системе.

  1. Верификация — сравнение пользователя с готовым биометрическим шаблоном.
  2. Идентификация — сравнение пользователя с множеством других. После получения биометрических данных система ищет в базе информацию для определения личности пользователя.

Биометрические системы контроля доступа используются:

  • на крупных предприятиях;
  • на определенных объектах, требующих повышенной безопасности;
  • для учета рабочего времени;
  • для регистрации посещаемости;
  • для ограничения доступа к особым помещениям.

Биометрические системы контроля доступа

Терминалы, считывающие отпечаток пальца

Применяются для организации ограничений на доступ в помещения. Зачастую такие устройства используются для учета рабочего времени. В зависимости от типа и модели могут иметь различный внешний вид корпуса, разные степени защиты, множество вариантов сканеров (считывателей отпечатков) и дополнительных функций.

Возможности:

  • хранение в базе данных от 100 до 3 000 шаблонов отпечатков пальцев;
  • сохранение тысячи записей посещаемости.

Основные принципы работы:

  • программирование пользователей происходит с помощью специальной карты или при подключении к компьютеру;
  • для переноса файлов посещаемости на компьютер используется USB;
  • возможно построение сетевых систем распределения доступа по интерфейсу Ethernet.

Терминалы распознавания изображения (геометрия лица)

Подобный биометрический контроль доступа позволяет бесконтактно идентифицировать пользователя. Успешно применяются на предприятиях, где качество отпечатков пальцев неудовлетворительно для распознавания, в связи с рабочим процессом. В зависимости от типа и модели могут иметь различный внешний вид корпуса, разные степени защиты, особенности дизайна и набор дополнительных функций.

Возможности:

  • инфракрасные оптические системы позволяют распознавать пользователя при темном или плохом освещении;
  • встроенные беспроводные коммуникации (GPRS, Wi-Fi) для оперативного контроля;
  • электронные замки, датчики тревоги, датчики дверей, резервные батареи для расширения функционала;
  • до 100 000 шаблонов лица.

Терминалы со встроенной системой распознавания по радужной оболочке глаза

Позволяют обеспечить идентификацию (аутентификацию) пользователя в реальном времени. Сканируют как в статике, так и в движении. Пропускная способность — до двадцати человек в минуту. Эти терминалы используются для учета рабочего времени, контроля доступа и часто в финансово-платежных системах для того, чтобы подтвердить транзакции.

Базовые характеристики (меняются в зависимости от модели устройства):

  • питание POE+ (через Ethernet);
  • регистрация и проверка проходит в самом терминале;
  • сканирование происходит встроенными камерами;
  • память событий до 70 000 записей;
  • доступны различные дополнительные интерфейсы (например, Wiegand).

Считыватели с распознаванием по венам на пальце

Поскольку вены находятся внутри тела человека, их изображение подделать невозможно. Распознавание возможно даже при наличии царапин и порезов. Поэтому такие биометрические системы безопасности и контроля доступа являются практически самым надежным способом идентификации пользователя. Использование систем данного класса рекомендуется на особо ответственных объектах.

Возможности:

  • терминал может использоваться в качестве прямого контроллера электронного замка;
  • может выступать в качестве считывателя с подключением к сторонним контроллерам;
  • различные режимы контроля доступа, помимо распознавания рисунка вен на пальце: бесконтактная карта, код или комбинация того и другого;

Системы распознавания рисунка вен на ладони

Подобные устройства обеспечивают высокую точность распознавания и исключают возможность подделать идентификатор.

Принцип работы:

  • ладонь освещается светом, который близок к инфракрасному;
  • этот свет поглощается обескислороженным гемоглобином внутри вен, проявляя рисунок;
  • для авторизации пользователя, уникальные образцы узоров вен сверяются с существующими (ранее зарегистрированными) шаблонами (образцами) в базе данных;

Биометрические терминалы по геометрии руки

Для идентификации пользователей используются уникальные трехмерные характеристики геометрии их ладоней. Процесс идентификации состоит из одного действия – нужно приложить руку на специальную плоскость терминала.

Возможности (варьируются в зависимости от модели):

  • скорость идентификации менее одной секунды;
  • простота регистрации шаблонов;
  • вывод информации на принтер (через различные встроенные интерфейсы);
  • автономная память на более чем 5 000 событий;
  • возможность входа по принуждению.

Преимущества использования биометрических систем безопасности

  • высокая достоверность;
  • простые процедуры сканирования;
  • большой выбор моделей, доступных к продаже;
  • доступные цены на популярные устройства.

Биометрические СКУД позволяет не только контролировать доступы в локальные зоны, но и позволяют также контролировать и вести табель учета рабочего времени, предоставлять обратную связь персоналу об опозданиях и задержках, что стимулирует их на повышение ответственности к рабочему процессу.