Шина процессора - соединяет процессор с северным мостом или контроллером памяти MCH. Она работает на частотах 66–200 МГц и используется для передачи данных между процессором и основной системной шиной или между процессором и внешней кэш-памятью в системах на базе процессоров пятого поколения. Схема взаимодействия шин в типичном компьютере на базе процессора Pentium (Socket 7) показано на рисунке.

На этом рисунке четко видна трехуровневая архитектура, в которой на самом верхнем уровне иерархии находится , далее следует шина PCI и за ней шина ISA. Большинство компонентов системы подключается к одной из этих трех шин.

В системах, созданных на основе процессоров Socket 7, внешняя кэш-память второго уровня установлена на системной плате и соединена с шиной процессора, которая работает на частоте системной платы (обычно от 66 до 100 МГц). Таким образом, при появлении процессоров Socket 7 с более высокой тактовой частотой рабочая частота кэш-памяти осталась равной сравнительно низкой частоте системной платы. Например, в наиболее быстродействующих системах Intel Socket 7 частота процессора равна 233 МГц, а частота шины процессора при множителе 3,5х достигает только 66 МГц. Следовательно, кэш-память второго уровня также работает на частоте 66 МГц. Возьмем, например, систему Socket 7, использующую процессоры AMD K6-2 550, работающие на частоте 550 МГц: при множителе 5,5х ч астота шины процессора равна 100 МГц. Следовательно, в этих системах частота кэш-памяти второго уровня достигает только 100 МГц.

Проблема медленной кэш-памяти второго уровня была решена в процессорах класса P6, таких как Pentium Pro, Pentium II, Celeron, Pentium III, а также AMD Athlon и Duron. В этих процессорах использовались разъемы Socket 8, Slot 1, Slot 2, Slot A, Socket A или Socket 370. Кроме того, кэш-память второго уровня была перенесена с системной платы непосредственно в процессор и соединена с ним с помощью встроенной шины. Теперь эта шина стала называться шиной переднего плана (Front-Side Bus - FSB), однако я, согласно устоявшейся традиции, продолжаю называть ее шиной процессора.

Включение кэш-памяти второго уровня в процессор позволило значительно повысить ее скорость. В современных процессорах кэш-память расположена непосредственно в кристалле процессора, т.е. работает с частотой процессора. В более ранних версиях кэш-память второгоуровня находилась в отдельной микросхеме, интегрированной в корпус процессора, и работала с частотой, равной 1/2, 2/5 или 1/3 частоты процессора. Однако даже в этом случае скорость интегрированной кэш-памяти была значительно выше, чем скорость внешнего кэша, ограниченного частотой системной платы Socket 7.

В системах Slot 1 кэш-память второго уровня была встроена в процессор, но работала только на его половинной частоте. Повышение частоты шины процессора с 66 до 100 МГц привело к увеличению пропускной способности до 800 Мбайт/с. Следует отметить, что в большинство систем была включена поддержка AGP . Частота стандартного интерфейса AGP равна 66 МГц (т.е. вдвое больше скорости PCI), но большинство систем поддерживают порт AGP 2x, быстродействие которого вдвое выше стандартного AGP, что приводит к увеличению пропускной способности до 533 Мбайт/с. Кроме того, в этих системах обычно использовались модули памяти PC100 SDRAM DIMM, скорость передачи данных которых равна 800 Мбайт/с.

В системах Pentium III и Celeron разъем Slot 1 уступил место гнезду Socket 370. Это было связано главным образом с тем, что более современные процессоры включают в себя встроенную кэш-память второго уровня (работающую на полной частоте ядра), а значит, исчезла потребность в дорогом корпусе, содержащем несколько микросхем. Скорость шины процессора увеличилась до 133 МГц, что повлекло за собой повышение пропускной способности до 1066 Мбайт/с. В современных системах используется уже AGP 4x со скоростью передачи данных 1066 Мбайт/с.

Шина процессора на основе hub-архитектуры

Обратите внимание на hub-архитектуру Intel, используемую вместо традиционной архитектуры “северный/южный мост”. В этой конструкции основное соединение между компонентами набора микросхем перенесено в выделенный hub-интерфейс со скоростью передачи данных 266 Мбайт/с (вдвое больше, чем у шины PCI), что позволило устройствам PCI использовать полную, без учета южного моста, пропускную способность шины PCI. Кроме того, микросхема Flash ROM BIOS , называемая теперь Firmware Hub, соединяется с системой через шину LPC. Как уже отмечалось, в архитектуре “северный/южный мост” для этого использовалась микросхема Super I/O. В большинстве систем для соединения микросхемы Super I/O вместо шины ISA теперь используется шина LPC. При этом hub-архитектура позволяет отказаться от использования Super I/O. Порты, поддерживаемые микросхемой Super I/O, называются традиционными (legacy), поэтому конструкция без Super I/O получила название нетрадиционной (legacy-free) системы. В такой системе устройства, использующие стандартные порты, должны быть подсоединены к компьютеру с помощью шины USB . В этих системах обычно используются два контроллера и до четырех общих портов (дополнительные порты могут быть подключены к узлам USB).

В системах, созданных на базе процессоров AMD, применена конструкция Socket A, в которой используются более быстрые по сравнению с Socket 370 процессор и шины памяти, но все еще сохраняется конструкция “северный/южный мост”. Обратите внимание на быстродействующую шину процессора, частота которой достигает 333 МГц (пропускная способность - 2664 Мбайт/с), а также на используемые модули памяти DDR SDRAM DIMM, которые поддерживают такую же пропускную способность (т.е. 2664 Мбайт/с). Также следует заметить, что большинство южных мостов включает в себя функции, свойственные микросхемам Super I/O. Эти микросхемы получили название Super South Bridge (суперъюжный мост).

Система Pentium 4 (Socket 423 или Socket 478), созданная на основе hub-архитектуры, показана на рисунке ниже. Особенностью этой конструкции является с тактовой частотой 400/533/800 МГц и пропускной способностью соответственно 3200/4266/6400 Мбайт/с. Сегодня это самая быстродействующая шина. Также обратите внимание на двухканальные модули PC3200 (DDR400), пропускная способность которых (3200 Мбайт/с) соответствует пропускной способности шины процессора, что позволяет максимально повысить производительность системы. В более производительных системах, включающих в себя шину с пропускной способностью 6400 Мбайт/с, используются двухканальные модули DDR400 с тактовой частотой 400 МГц, благодаря чему общая пропускная способность шины памяти достигает 6400 Мбайт/с. Процессоры с частотой шины 533 МГц могут использовать парные модули памяти (PC2100/DDR266 или PC2700/DDR333) в двухканальном режиме для достижения пропускной способности шины памяти 4266 Мбайт/с. Соответствие пропускной способности шины памяти рабочим параметрам шины процессора является условием оптимальной работы.

Тема: Устройства ПК.

Учебныевопросы :

1. Устройства, составляющие архитектуру ПК.

2. Внутренние устройства ПК.

3. Внешние устройства ПК.

Современные ЭВМ весьма разнообразны как по своему устройству, так и по исполняемым функциям.

Если рассматривать ЭВМ по их функциональности, можно условно классифицировать их:

1. «Бытовые» ЭВМ (ПК);

2. «Учебные» ЭВМ (упрощенной архитектуры);

3. «Профессиональные» ЭВМ (рабочие станции на производстве, в офисе и др.);

4. ЭВМ-серверы (управление рабочими станциями, объединенными в сети, хранение больших массивов информации и т.д.) и др.

В зависимости от выполняемых функций и, благодаря открытой архитектуре устройство ЭВМ весьма разнообразно. В результате научно-технического развития архитектура ЭВМ постоянно усовершенствуется (эволюционирует).

Открытая архитектура современных ПК:

Интерфейсная система

Архитектура ЭВМ – это наиболее общие принципы построения, реализующие программное управление взаимодействием её основных узлов. Архитектура ЭВМ – это, прежде всего блоки и устройства, а также структура связей между ними.

Блоки и устройства, составляющие архитектуру ПК, кроме того разделяют на две группы:

· внутренние устройства;

· внешние (периферийные) устройства.

Внутренние устройства, вероятно, получили такое обобщающее название, так как объединены в одном корпусе , называемом системным блокомПК .

Внешний вид и размеры корпусов системных блоков разнообразны. Однако обязательным для всех корпусов элементом являются разъёмы для подключения внешних устройств и интерфейс управления .

При огромном разнообразии вариантов, составляемых из устройств, систем, помещенных в корпус системного блока, обязательно наличие минимальной их комплектации .

К «обязательным» относятся:

· Блок питания . В среднем мощность их составляет 100 – 400 Вт. Чем больше устройств в системе, тем большую мощность должен иметь блок питания. (Средняя мощность 200 – 300 Вт).

· Системная (материнская) плата . Это многофункциональное устройство является центральным для ЭВМ с открытой архитектурой. По физическому строению она представляет собой очень сложно организованную многослойную печатную плату.



С точки зрения функциональности системная плата выполняет комплекс функций по интеграции устройств и обеспечению их взаимодействия.

По мере того, как элементы конфигурации архитектуры ЭВМ стандартизируется, реализуется тенденция включения их в состав материнской платы.

Первая материнская плата была разработана фирмой IBM в августе 1981 года (PC-1). С самого начала материнская плата задумывалась как компонент, обеспечивающий механическое соединение и электрическую связь между всеми прочими аппаратными средствами. Кроме этих функций, она также осуществляет подачу электроэнергии (питание) на компоненты компьютера.

Архитектура современной системной платы (обобщенная) .

Современная МП содержит большое количество контроллеров (специализированных микропроцессоров) обеспечивающих взаимодействие всех устройств. Они реализованы в двух наборах микросхем, исторически получивших название «северный мост» и «южный мост» или чипсетов .

· Контроллер-концентратор памяти, или «северный мост» (англ. North Bridge) обеспечивает работу процессора, оперативной памяти и видеоподсистемы;

· Контроллер-концентратор ввода-вывода, или «Южный мост» (англ. South Bridge) обеспечивает работу с внешними устройствами.

Пропускная способность шины.

Быстродействие процессора, оперативной памяти и периферийных устройств существенно различаются.

Быстродействие устройства зависит от:

· тактовой частоты обработки данных (обычно измеряется в мегагерцах – МГц);

· и разрядности, т.е. количества битов данных, обрабатываемых за один такт (промежуток времени между подачей электрических импульсов, синхронизирующих работу устройств ПК).

Соответственно скорость передачи данных – пропускная способность соединяющих эти устройства шин также должна различаться. Пропускная способность шины равна разрядности шины (биты) умноженной на частоту шины (Гц – герцы. 1Гц = 1 такт в секунду ).

Системная шина (FSB от англ. Front Side Bus) осуществляет передачу данных между «Северным мостом» и микропроцессором. В современных ПК системная шина имеет разрядность 64 бита и частоту 400 МГц – 1600 МГц.

Пропускная способность может достигать 12,5 Гбайт/с.

Шина памяти осуществляет передачу данных между «Северным мостом» и оперативной памятью ПК. Имеет те же показатели, что и системная шина.

Шина PCI Express (Peripherial Component Interconnect Bus Express – ускоренная шина взаимодействия периферийных устройств) осуществляет передачу данных между «Северным мостом» и видеоплатой (видеокартой). Пропускная способность этой шины может достигать 32 Гбайт/с.

Шина SATA (англ. Serial Advanced Technology Attachment – последовательная шина подключения накопителей) осуществляет передачу данных между «Южным мостом» и устройством внешней памяти (жесткие диски, CD и DVD дисководы, дискеты). Пропускная способность может достигать 300 Мбайт/с.

Шина USB (англ. Universal Serial Bus – универсальная последовательная шина) осуществляет передачу данных между «Южным мостом» и разнообразными внешними устройствами (сканерами, цифровыми камерами и др.). Пропускная способность до 60 Мбайт/с. Обеспечивает подключение к ПК одновременно до 127 периферийных устройств.

Другие важные функции системной платы – обеспечение механического соединения и электрической связи между всеми прочими аппаратными средствами, а также подачи на них питания.

Существует большое разнообразие конструктивных решений системных плат.

Одной из характеристик системной платы является форм-фактор (AT/ATX). Она определяет размеры системной платы и расположений на ней компонентов аппаратных средств.

Упрощенная схема размещения компонентов СП.

Центральным блоком ПК считается расположенный в специальном разъёме системной платы электронный блок получивший название процессор или микропроцессор .

Первоначально микропроцессор объединил на одном кристалле кремния СБИС арифметико-логического устройства (АЛУ ) и устройства управления (УУ ).

Выполняемые микропроцессором команды предусматривают обычно арифметические действия, логические операции, передачу управления и перемещение данных между регистрами, оперативной памятью и портами ввода-вывода. С внешними устройствами микропроцессор сообщается благодаря своим шинам адреса, данных и управления, выведенным на специальные контакты корпуса микросхемы.

Устройство управления вырабатывает управляющие сигналы, поступающие по шинам инструкций во все блоки ЭВМ.

Упрощенная схема УУ

Регистр команд – запоминающий регистр, в котором хранится код команды: код выполняемой операции и адреса операндов, участвующих в операции.

Постоянное запоминающее устройство микропрограмм – хранит в своих ячейках управляющие сигналы (импульсы), необходимые для выполнения в блоках ПК операций обработки информации. Дешифратор операций, считывая код операции из регистратора команд, выбирает в ПЗУ микропрограмм необходимую последовательность управляющих сигналов ­– код команды.

Узел формирования адреса – устройство, вычисляющее полный адрес ячейки памяти (регистра) по реквизитам, поступающим из регистра команд.

Кодовые шины данных, адреса и инструкций – части внутренней шины микропроцессора, осуществляющие передачу сигналов между процессором и другими устройствами ПК.

В общем случае УУ формирует управляющие сигналы для выполнения следующих основных процедур:

· выборки из регистра - счетчика адреса ячейки ОЗУ, где хранится очередная команда программы;

· выборки из ячеек ОЗУ, когда очередной команды и приёма считанной команды в регистр команд;

· расшифровки кода операции и признаков выбранной команды;

· считывания из соответствующих расшифрованному коду операций ячеек ПЗУ микропрограмм управляющих сигналов (импульсов), определяющих во всех блоках ЭВМ процедуры выполнения заданной операции, и пересылки управляющих сигналов в эти блоки;

· считывания из регистра команд и регистром МПП (микропроцессорной памяти) отдельных составляющих адресов операндов;

· выборки операндов и выполнения заданной операции их обработки;

· записи результатов в памяти;

· формирование адреса следующей команды программы.

Арифметико-логическое устройство предназначено для выполнения арифметических и логических операций преобразования информации.

Производительность видеокарты определяется не только мощностью самого GPU. Любому чипу нужен большой объём выделенной памяти с высокой пропускной способностью при записи и чтении различных данных: текстур, вершин, содержимого буферов и т. п. Даже самый мощный видеочип можно «придушить» слишком малым объёмом видеопамяти, да ещё с медленным доступом, поэтому характеристики устанавливаемых микросхем памяти также являются одними из важнейших параметров современных видеокарт.

Микросхемы памяти, количество которых на некоторых моделях видеокарт достигает 24 штук, обычно располагаются на печатной плате вокруг видеочипа, на одной или обеих сторонах. В некоторых случаях для них не используется даже пассивное охлаждение, но часто применяется общий кулер, охлаждающий и GPU и память, а иногда и отдельные радиаторы. Вот так микросхемы памяти выглядят на GeForce GTX 590 со снятым устройством охлаждения:

Современные видеокарты оснащаются различным объемом локальной видеопамяти, но обычно он начинается от 512 МБ и может достигать 3 ГБ на один GPU (с удвоением объёма на двухчиповых видеокартах). Чаще всего на видеокарты low-end и mid-end сейчас ставят 1 ГБ памяти, а на high-end — 1,5-3 гигабайта на чип, но есть и исключения. Так, карты самого низкого уровня могут иметь и 512 МБ более быстрой памяти GDDR5, и 1-2 ГБ медленной DDR3.

Чем больше выделенной памяти установлено на видеокарте, тем больше данных (тех же текстур, вершин и буферов) можно хранить в ней, не используя медленный доступ к ОЗУ компьютера. Причем, больше всего места занимают текстуры и различные буферы, а вот собственно геометрические данные обычно не слишком объёмны. Рассмотрим скриншоты из довольно старой игры с разными установками качества текстур:

В этой игре, как и во многих других, автоматически настраивается качество текстур под имеющийся объём текстурной памяти. В данном случае режим Extra автоматически выставляется на видеокартах с 320-1024 МБ памяти, High или Normal — на 256 МБ, в зависимости от настроек разрешения и уровня антиалиасинга, а Low — на самых слабых GPU с 128 МБ. И даже если вы выставите максимальные настройки вручную, то на видеокарте с недостаточным объёмом видеопамяти для хранения ресурсов будет использоваться часть системной памяти, что приведет к серьёзным "тормозам" и отсутствию комфорта и плавности в игре.

В последнее время рост требований к объёму видеопамяти сильно замедлился, и виновато в этом засилие мультиплатформенных игр. Современные игровые консоли имеют лишь по 512 МБ памяти и поэтому разработчики игр ориентируются именно на этот уровень. Конечно, в ПК-версиях игр зачастую предусмотрены как текстуры большего разрешения, так и высокое разрешение рендеринга, что требует куда большего объёма видеопамяти. Но всё равно, объём памяти в 1 ГБ до сих пор вполне приемлем в подавляющем большинстве случаев. Кроме экстремальных настроек сглаживания и разрешения, вроде MSAA 8x и 2560×1600, соответственно.

Но даже уже устаревшим мультиплатформенным играм не хватает 512 МБ, они довольно требовательны к объёму видеопамяти, занимая до 600-700 МБ. И всё же, на данный момент минимальным необходимым объёмом локальной памяти для игровых видеокарт мы считаем 1 ГБ. Он же является и оптимальным для большинства моделей. Кроме видеокарт NVIDIA, имеющих 320- и 384-битную шины памяти — у них объём видеопамяти ещё более подходящий — 1280-1536 МБ. Но для топовых моделей уже востребован и больший объём, порядка 2 ГБ, что предлагают видеокарты серии Radeon HD 6900, и 3 ГБ, ставящиеся на некоторые модификации GeForce GTX 580. Тем более, что видеокарту всегда лучше подбирать с небольшим запасом.

К слову, в случае интегрированных видеоядер и устаревших дискретных видеокарт бывает так, что указанное на коробке количество видеопамяти не равно объему установленных на плату микросхем. Такое было ранее в случае видеоплат low-end, работающих с частью системной памяти при помощи технологий TurboCache (NVIDIA) и HyperMemory (ATI):

В характеристиках видеокарт с поддержкой этих технологий в маркетинговых целях указывался объём памяти (в т. ч. и часть ОЗУ), который может использоваться видеочипом, равный 128 МБ, в то время как в реальности на них установлен меньший объем — 16-32 МБ. Поэтому всегда нужно внимательно читать материалы нашего сайта, чтобы не попадаться на подобные ухищрения в будущем. Но пока что можно жить спокойно, ведь сейчас в таких видеокартах уже нет никакого смысла, их нишу прочно заняли интегрированные чипсеты.

С имеющимися разновидностями видеокарт по объёму локальной памяти мы разобрались, но ведь объём памяти для видеокарт — это еще не всё, и даже зачастую не главное! Очень часто бывает так, что на дешёвые видеокарты ставят очень большое количество памяти, чтобы нарисовать красивые цифры на их коробках и в описаниях готовых систем (поэтому их так любят сборщики — вспомните слоганы вроде «4 ядра, 4 гига»), с расчетом на то, чтобы они лучше продавались. Но для слабых видеокарт в повышенном объёме памяти никакого смысла нет, они ведь всё равно не смогут выдавать приемлемую частоту кадров на высоких настройках, в которых и используется большие объёмы текстур и геометрии.

Продавцы часто используют объём видеопамяти в качестве основной характеристики видеокарт, и это вводит в заблуждение простых покупателей, плохо знакомых с реальным положением дел. Сравним производительность решений с разным количеством видеопамяти на примере двух одинаковых видеокарт Radeon HD 6950, имеющих единственное отличие — на первой из них установлено 1 ГБ видеопамяти, а на второй — 2 ГБ. Любой менеджер по продажам скажет вам, что вторая видеокарта значительно лучше первой, кроме случаев, когда в магазине есть модели только с 1 ГБ памяти и редчайших случаев честных и компетентных продавцов. А что получается на самом деле? Есть ли великая разница? Посмотрим на цифры, полученные в игре Metro 2033, являющейся одной из наиболее требовательных:

Как видите, в большинстве игровых режимов объём видеопамяти влияет на производительность не слишком значительно — разница не превышает 5-6%. То же самое получается и в других играх, даже современных и ПК-эксклюзивных (что сейчас большая редкость). Лишь в сверхвысоком разрешении и с максимальными настройками качества появляется значимая разница, когда модель с 1 ГБ заметно отстаёт от более дорогой карты с 2 ГБ памяти — на 27%.

Казалось бы — вот оно, ради чего нужно платить деньги! Но посмотрите на цифры кадров в секунду при разрешении 2560×1600 — разве 18,9 FPS можно назвать комфортной скоростью? Нет. Что 14,9 FPS, что 18,9 FPS — эти цифры одинаково не имеют практического смысла, никто не будет играть с настолько дёрганой частотой смены кадров. Поэтому, с некоторым допущением, можно считать, что разница в объёме видеопамяти между 1 ГБ и 2 ГБ сейчас незначительно сказывается на скорости рендеринга, и сравнивать даже топовые видеокарты по количеству памяти не нужно.

Но речь шла только об объёмах памяти выше 1 ГБ. Да и 512 МБ для плат нижнего ценового диапазона сейчас вполне достаточны. В этих случаях, примеры, когда объём памяти начинает сказываться на производительности, весьма редки. Разработчики игровых приложений рассчитывают используемые в играх ресурсы и графические настройки так, чтобы все данные входили в локальную видеопамять наиболее распространённых на рынке видеокарт. То есть, сейчас это уровни 512 МБ (для low-end) и от 1 ГБ для всех остальных видеокарт, включая и высокие разрешения и максимальные настройки качества. А если видеопамяти меньше, то современные игры или будут тормозить или даже не дадут выставить максимальные настройки.

Но этот расчётный объем видеопамяти у игровых разработчиков растет, даже несмотря на засилие консолей и мультиплатформы. Ещё пару лет назад было вполне достаточно 512-640 МБ, а теперь появились проекты, в которых этот объёма недостаточно. Но даже среди самых последних игр таких проектов пока мало, но они уже появляются. Поэтому, в случае не слишком большой разницы в цене между видеокартами с разными объёмами памяти при прочих равных условиях (частота и ширина шины), следует покупать модель с большим объёмом. Но без погони за цифрами — никакой low-end карте не поможет пара гигабайт медленной DDR3-памяти. Такой объём ей на данный момент просто не нужен. Зато важен другой параметр, о котором мы поговорим далее.

Подробнее о пропускной способности памяти

Ещё одна важная характеристика, о которой мы уже писали — это пропускная способность памяти (ПСП), которая зависит как от частоты работы памяти, так и от ширины шины. Этот параметр определяет количество данных, которые теоретически можно передать в память или из памяти за единицу времени. Другими словами, это скорость, с которой графическое ядро может записывать и считывать различные данные в локальную видеопамять. Соответственно, чем быстрее считываются текстурные, геометрические и прочие данные, и чем быстрее записываются в буфер рассчитанные пиксели, тем выше будет общая производительность.

Пиковая пропускная способность памяти рассчитывается довольно просто — это произведение «эффективной» частоты памяти на количество данных, передаваемых за такт (ширина шины памяти). Например, для GeForce GTX 580 с шиной 384 бит и частотой видеопамяти 1002(4008) МГц, ПСП будет равна:

1002 МГц × 4 (передача данных с учетверённым темпом) × 48 (384/8 байт за такт) ≈ 192,4 ГБ/с

Если с эффективной частотой памяти всё понятно, её обычно везде пишут, и на коробках, и в характеристиках прописывают прямо, то с шиной всё несколько сложнее, ведь она далеко не всегда явно указывается производителем, поэтому на неё нужно обращать особое внимание. Большинство современных видеокарт используют 128-битную или 256-битную шину памяти на один GPU, топовые модели могут иметь до 384 бит, а некоторые недорогие платы оснащаются лишь 64-битной шиной.

Естественно, что последнее нигде широко не афишируется. Для производителя узкая шина и дешевле в производстве, и позволяет удобнее масштабировать производительность решений линейки. И две одинаковые видеокарты с одинаковыми частотами, но с разной шириной шины памяти, будут сильно отличаться по производительности. Та, у которой ПСП больше, может обрабатывать большее количество данных, по сравнению с картой с меньшей разрядностью шины, хотя сами GPU у них совершенно одинаковые.

Рассмотрим очень жизненный пример — модель GeForce GTS 450 с двумя разными типами памяти, GDDR5 на более дорогой модели и DDR3 на дешёвой. Во время выхода на эту видеокарту ставили исключительно быструю GDDR5-память с приличной пропускной способностью. Но когда её время прошло и она спустилась в нижний ценовой диапазон, производители начали экономить, выпуская варианты с DDR3-памятью, которая гораздо дешевле. Результат подобной экономии можно пронаблюдать на следующей диаграмме:

Как видите, всё очень печально для DDR3-варианта — даже в далеко не самой новой игре разница в различных разрешениях экрана составляет от 50 до 70%! То есть, мощность GPU во всех протестированных условиях ограничена медленной видеопамятью. Модель с DDR3 просто не может считывать и записывать данные с теоретически возможной скоростью. Таким образом производители вместе с компанией NVIDIA снизили себестоимость модели, спустив её ещё ниже в бюджетный сегмент.

Поэтому при выборе между видеокартой с бо́льшим и меньшим объёмом видеопамяти нужно всегда смотреть на тактовые частоты, ширину шины и цены! Так, при большой разнице в ценах между двумя решениями среднего и низшего уровней с 1 ГБ и 2 ГБ памяти нет смысла гнаться за дорогим вариантом — видеокарта такого уровня просто не получит большой прибавки в производительности от увеличенного объёма. Но если приходится выбирать между видеокартами с разным объёмом памяти и разной ПСП, то тут выбор уже не так однозначен, и нужно его совершать исходя из того, какого уровня видеокарта и насколько разнятся их частоты. Не забывая и про цену, естественно.

Например, при выборе между топовой видеокартой с 1,5 ГБ памяти и более высокими тактовыми частотами против такой же карты но с 3 ГБ памяти со стандартными частотами и более высокой ценой на данный момент выгоднее будет первая видеокарта, так как она обеспечит даже бо́льшую производительность почти во всех режимах и условиях, кроме самых высоких разрешений. То же касается, к примеру, GeForce GTS 450 с 1 ГБ GDDR5-памяти против GTS 450 с 2 ГБ DDR3 — первый вариант точно будет быстрее. В большинстве режимов видеокарты бо́льшая частота и ширина шины играет значительно более важную роль, чем бо́льший объём видеопамяти, и только в высоких разрешениях увеличенный объем может серьёзно сказаться на скорости рендеринга.

Теперь, узнав что это такое и для чего и как оно служит, многие из Вас наверно подумываете о том, чтобы приобрести для своего компьютера более мощную и производительную оперативку. Ведь увеличение производительности компьютера с помощью дополнительного объёма памяти ОЗУ является самым простым и дешевым (в отличии например от видеокарты) методом модернизации вашего любимца.

И… Вот вы стоите у витрины с упаковками оперативок. Их много и все они разные. Встают вопросы: А какую оперативную память выбрать? Как правильно выбрать ОЗУ и не прогадать? А вдруг я куплю оперативку, а она потом не будет работать? Это вполне резонные вопросы. В этой статье я попробую ответить на все эти вопросы. Как вы уже поняли, эта статья займет свое достойное место в цикле статей, в которых я писал о том, как правильно выбирать отдельные компоненты компьютера т.е. железо. Если вы не забыли, туда входили статьи:



Этот цикл будет и дальше продолжен, и в конце вы сможете уже собрать для себя совершенный во всех смыслах супер компьютер 🙂 (если конечно финансы позволят:))
А пока учимся правильно выбирать для компьютера оперативную память .
Поехали!

Оперативная память и её основные характеристики.

При выборе оперативной памяти для своего компьютера нужно обязательно отталкиваться от вашей материнской платы и процессора потому что модули оперативки устанавливаются на материнку и она же поддерживает определенные типы оперативной памяти. Таким образом получается взаимосвязь между материнской платой, процессором и оперативной памятью.

Узнать о том, какую оперативную память поддерживает ваша материнка и процессор можно на сайте производителя, где необходимо найти модель своей материнской платы, а также узнать какие процессоры и оперативную память для них она поддерживает. Если этого не сделать, то получится, что вы купили супер современную оперативку, а она не совместима с вашей материнской платой и будет пылиться где нибудь у вас в шкафу. Теперь давайте перейдем непосредственно к основным техническим характеристикам ОЗУ, которые будут служить своеобразными критериями при выборе оперативной памяти. К ним относятся:

Вот я перечислил основные характеристики ОЗУ, на которые стоит обращать внимание в первую очередь при её покупке. Теперь раскроем каждый из ни по очереди.

Тип оперативной памяти.

На сегодняшний день в мире наиболее предпочтительным типом памяти являются модули памяти DDR (double data rate). Они различаются по времени выпуска и конечно же техническими параметрами.

  • DDR или DDR SDRAM (в переводе с англ. Double Data Rate Synchronous Dynamic Random Access Memory — синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных). Модули данного типа имеют на планке 184 контакта, питаются напряжением в 2,5 В и имеют тактовую частоту работы до 400 мегагерц. Данный тип оперативной памяти уже морально устарел и используется только в стареньких материнских платах.
  • DDR2 — широко распространенный на данное время тип памяти. Имеет на печатной плате 240 контактов (по 120 на каждой стороне). Потребление в отличие от DDR1 снижено до 1,8 В. Тактовая частота колеблется от 400 МГц до 800 МГц.
  • DDR3 — лидер по производительности на момент написания данной статьи. Распространен не менее чем DDR2 и потребляет напряжение на 30-40% меньше в отличии от своего предшественника (1,5 В). Имеет тактовую частоту до 1800 МГц.
  • DDR4 — новый, супер современный тип оперативной памяти, опережающий своих собратьев как по производительности (тактовой частоте) так и потреблением напряжения (а значит отличающийся меньшим тепловыделением). Анонсируется поддержка частот от 2133 до 4266 Мгц. На данный момент в массовое производство данные модули ещё не поступили (обещают выпустить в массовое производство в середине 2012 года). Официально, модули четвертого поколения, работающие в режиме DDR4-2133 при напряжении 1,2 В были представлены на выставке CES, компанией Samsung 04 января 2011 года.

Объём оперативной памяти.

Про объём памяти много писать не буду. Скажу лишь, что именно в этом случае размер имеет значение 🙂
Все несколько лет назад оперативная память объёмом в 256-512 МБ удовлетворяла все нужды даже крутых геймерских компьютеров. В настоящее же время для нормального функционирования отдельно лишь операционной системы windows 7 требуется 1 Гб памяти, не говоря уже о приложениях и играх. Лишней оперативка никогда не будет, но скажу Вам по секрету, что 32-х разрядная windows использует лишь 3,25 Гб ОЗУ, если даже вы установите все 8 Гб ОЗУ. Подробнее об этом вы можете прочитать .

Габариты планок или так называемый Форм — фактор.

Form — factor — это стандартные размеры модулей оперативки, тип конструкции самих планок ОЗУ.
DIMM (Dual InLine Memory Module — двухсторонний тип модулей с контактами на обоих сторонах) — в основном предназначены для настольных стационарных компьютеров, а SO-DIMM используются в ноутбуках.

Тактовая частота.

Это довольно таки важный технический параметр оперативной памяти. Но тактовая частота есть и у материнской платы и важно знать рабочую частоту шины этой платы, так как если вы купили например модуль ОЗУ DDR3-1800 , а слот (разъём) материнской платы поддерживает максимальную тактовую частоту DDR3-1600 , то и модуль оперативной памяти в результате будет работать на тактовой частоте в 1600 МГц . При этом возможны всяческие сбои, ошибки в работе системы и .

Примечание: Частота шины памяти и частота процессора — совершенно разные понятия.

Из приведенных таблиц можно понять, что частота шины, умноженная на 2, дает эффективную частоту памяти (указанную в графе «чип»), т.е. выдает нам скорость передачи данных. Об этом же нам говорит и название DDR (Double Data Rate) — что означает удвоенная скорость передачи данных.
Приведу для наглядности пример расшифровки в названии модуля оперативной памяти — Kingston/PC2-9600/DDR3(DIMM)/2Gb/1200MHz , где:
— Kingston — производитель;
— PC2-9600 — название модуля и его пропускная способность;
— DDR3(DIMM) — тип памяти (форм фактор в котором выполнен модуль);
— 2Gb — объем модуля;
— 1200MHz — эффективная частота, 1200 МГц.

Пропускная способность.

Пропускная способность — характеристика памяти, от которой зависит производительность системы. Выражается она как произведение частоты системной шины на объём данных передаваемых за один такт. Пропускная способность (пиковый показатель скорости передачи данных) – это комплексный показатель возможности RAM , в нем учитывается частота передачи данных , разрядность шины и количество каналов памяти. Частота указывает потенциал шины памяти за такт – при большей частоте можно передать больше данных.
Пиковый показатель вычисляется по формуле: B = f * c , где:
В — пропускная способность, f — частота передачи, с — разрядность шины. Если Вы используете два канала для передачи данных, все полученное умножаем на 2. Чтобы получить цифру в байтах/c, Вам необходимо полученный результат поделить на 8 (т.к. в 1 байте 8 бит).
Для лучшей производительности пропускная способность шины оперативной памяти и пропускная способность шины процессора должны совпадать. К примеру, для процессора Intel core 2 duo E6850 с системной шиной 1333 MHz и пропускной способностью 10600 Mb/s , можно установить два модуля с пропускной способностью 5300 Mb/s каждый (PC2-5300 ), в сумме они будут иметь пропускную способность системной шины (FSB ) равную 10600 Mb/s .
Частоту шины и пропускную способность обозначают следующим образом: «DDR2-XXXX » и «PC2-YYYY «. Здесь «XXXX » обозначает эффективную частоту памяти, а «YYYY » пиковую пропускную способность.

Тайминги (латентность).

Тайминги (или латентность) — это временные задержки сигнала, которые, в технической характеристике ОЗУ записываются в виде «2-2-2 » или «3-3-3 » и т.д. Каждая цифра здесь выражает параметр. По порядку это всегда «CAS Latency » (время рабочего цикла), «RAS to CAS Delay » (время полного доступа) и «RAS Precharge Time » (время предварительного заряда).

Примечание

Чтобы вы могли лучше усвоить понятие тайминги, представьте себе книгу, она будет у нас оперативной памятью, к которой мы обращаемся. Информация (данные) в книге (оперативной памяти) распределены по главам, а главы состоят из страниц, которые в свою очередь содержат таблицы с ячейками (как например в таблицах Excel). Каждая ячейка с данными на странице имеет свои координаты по вертикали (столбцы) и горизонтали (строки). Для выбора строки используется сигнал RAS (Raw Address Strobe) , а для считывания слова (данных) из выбранной строки (т.е. для выбора столбца) — сигнал CAS (Column Address Strobe) . Полный цикл считывания начинается с открытия «страницы» и заканчивается её закрытием и перезарядкой, т.к. иначе ячейки разрядятся и данные пропадут.Вот так выглядит алгоритм считывания данных из памяти:

  1. выбранная «страница» активируется подачей сигнала RAS ;
  2. данные из выбранной строки на странице передаются в усилитель, причем на передачу данных необходима задержка (она называется RAS-to-CAS );
  3. подается сигнал CAS для выбора (столбца) слова из этой строки;
  4. данные передаются на шину (откуда идут в контроллер памяти), при этом также происходит задержка (CAS Latency );
  5. следующее слово идет уже без задержки, так как оно содержится в подготовленной строке;
  6. после завершения обращения к строке происходит закрытие страницы, данные возвращаются в ячейки и страница перезаряжается (задержка называется RAS Precharge ).

Каждая цифра в обозначении указывает, на какое количество тактов шины будет задержан сигнал. Тайминги измеряются в нано-секундах. Цифры могут иметь значения от 2 до 9 . Но иногда к трем этим параметрам добавляется и четвертый (например: 2-3-3-8 ), называющийся «DRAM Cycle Time Tras/Trc ” (характеризует быстродействие всей микросхемы памяти в целом).
Случается, что иногда хитрый производитель указывает в характеристике оперативки лишь одно значение, например «CL2 » (CAS Latency ), первый тайминг равный двум тактам. Но первый параметр не обязательно должен быть равен всем таймингам, а может быть и меньше других, так что имейте это в виду и не попадайтесь на маркетинговый ход производителя.
Пример для наглядности влияния таймингов на производительность: система с памятью на частоте 100 МГц с таймингами 2-2-2 обладает примерно такой же производительностью, как та же система на частоте 112 МГц , но с задержками 3-3-3 . Другими словами, в зависимости от задержек, разница в производительности может достигать 10 % .
Итак, при выборе лучше покупать память с наименьшими таймингами, а если Вы хотите добавить модуль к уже установленному, то тайминги у покупаемой памяти должны совпадать с таймингами установленной памяти.

Режимы работы памяти.

Оперативная память может работать в нескольких режимах, если конечно такие режимы поддерживаются материнской платой. Это одноканальный , двухканальный , трехканальный и даже четырехканальный режимы. Поэтому при выборе оперативной памяти стоит обратить внимание и на этот параметр модулей.
Теоретически скорость работы подсистемы памяти при двухканальном режиме увеличивается в 2 раза, трехканальном – в 3 раза соответственно и т.д., но на практике при двухканальном режиме прирост производительности в отличии от одноканального составляет 10-70%.
Рассмотрим подробнее типы режимов:

  • Single chanell mode (одноканальный или асимметричный) – этот режим включается, когда в системе установлен только один модуль памяти или все модули отличаются друг от друга по объему памяти, частоте работы или производителю. Здесь неважно, в какие разъемы и какую память устанавливать. Вся память будет работать со скоростью самой медленной из установленной памяти.
  • Dual Mode (двухканальный или симметричный) – в каждом канале устанавливается одинаковый объем оперативной памяти (и теоретически происходит удвоение максимальной скорости передачи данных). В двухканальном режиме модули памяти работают попарно 1-ый с 3-им и 2-ой с 4-ым.
  • Triple Mode (трехканальный) – в каждом из трех каналов устанавливается одинаковый объем оперативной памяти. Модули подбираются по скорости и объему. Для включения этого режима модули должны быть установлены в 1, 3 и 5/или 2, 4 и 6 слоты. На практике, кстати говоря, такой режим не всегда оказывается производительнее двухканального, а иногда даже и проигрывает ему в скорости передачи данных.
  • Flex Mode (гибкий) – позволяет увеличить производительность оперативной памяти при установке двух модулей различного объема, но одинаковых по частоте работы. Как и в двухканальном режиме платы памяти устанавливаются в одноименные разъемы разных каналов.

Обычно наиболее распространенным вариантом является двухканальный режим памяти.
Для работы в многоканальных режимах существуют специальные наборы модулей памяти — так называемая Kit-память (Kit-набор) — в этот набор входит два (три) модуля, одного производителя, с одинаковой частотой, таймингами и типом памяти.
Внешний вид KIT-наборов:
для двухканального режима

для трехканального режима

Но самое главное, что такие модули тщательно подобраны и протестированы, самим производителем, для работы парами (тройками) в двух-(трёх-) канальных режимах и не предполагают никаких сюрпризов в работе и настройке.

Производитель модулей.

Сейчас на рынке ОЗУ хорошо себя зарекомендовали такие производители, как: Hynix , amsung , Corsair , Kingmax , Transcend , Kingston , OCZ
У каждой фирмы к каждому продукту имеется свой маркировочный номер , по которому, если его правильно расшифровать, можно узнать для себя много полезной информации о продукте. Давайте для примера попробуем расшифровать маркировку модуля Kingston семейства ValueRAM (смотрите изображение):

Расшифровка:

  • KVR – Kingston ValueRAM т.е. производитель
  • 1066/1333 – рабочая/эффективная частота (Mhz)
  • D3 — тип памяти (DDR3 )
  • D (Dual) – rank/ранг . Двухранговый модуль – это два логических модуля, распаянных на одном физическом и пользующихся поочерёдно одним и тем же физическим каналом (нужен для достижения максимального объёма оперативной памяти при ограниченном количестве слотов)
  • 4 – 4 чипа памяти DRAM
  • R – Registered , указывает на стабильное функционирование без сбоев и ошибок в течение как можно большего непрерывного промежутка времени
  • 7 – задержка сигнала (CAS=7 )
  • S – термодатчик на модуле
  • K2 – набор (кит) из двух модулей
  • 4G – суммарный объем кита (обеих планок) равен 4 GB.

Приведу еще один пример маркировки CM2X1024-6400C5 :
Из маркировки видно, что это модуль DDR2 объемом 1024 Мбайт стандарта PC2-6400 и задержками CL=5 .
Марки OCZ , Kingston и Corsair рекомендуют для оверклокинга, т.е. имеют потенциал для разгона. Они будут с небольшими таймингами и запасом тактовой частоты, плюс ко всему они снабжены радиаторами, а некоторые даже кулерами для отвода тепла, т.к. при разгоне количество тепла значительно увеличивается. Цена на них естественно будет гораздо выше.
Советую не забывать про подделки (их на прилавках очень много) и покупать модули оперативной памяти только в серьезных магазинах, которые дадут Вам гарантию.

Напоследок:
На этом все. С помощью данной статьи, думаю, вы уже не ошибетесь при выборе оперативной памяти для своего компьютера. Теперь вы сможете правильно выбрать оперативку для системы и повысить её производительность без каких либо проблем. Ну, а тем кто купит оперативную память (или уже купил), я посвящу следующую статью, в которой я подробно опишу как правильно устанавливать оперативную память в систему. Не пропустите…

Лучшая оперативная память 2019

Corsair Dominator Platinum

Лучшая память среди одноклассников с высокой производительностью и инновациями в технологии RGB. Стандарт DDR4, скорость 3200MHz, дефолтные тайминги 16.18.18.36, два модуля по 16 гигабайт. У планок яркие светодиоды подсветки Capellix RGB, продвинутая программа iCUE теплоотводы Dominator DHX. Единственная проблема – может не подойти высота модуля.

Компания Corsair, как всегда, с каждой новой моделью превосходит саму себя, Dominator Platinum не стала исключением. Сегодня это излюбленный набор памяти DDR4 для геймеров и владельцев мощных рабочих станций. Внешний вид модулей гладкий и стильный импонирует любителям гейминга, DHX охлаждение работает эффективно, а производительность планок уже готова стать легендой. В любом случае, на долгие годы она обеспечит пользователя флагманскими параметрами. Сейчас у памяти новый дизайн, новая, более яркая подсветка Corsair Capellix на 12 светодиодов. Программное обеспечение (фирменное) iCUE обеспечивает гибкую настройку памяти на максимальную производительность. Если вы поменяли материнку или процессор, а может быть и графический ускоритель, под любой новый компонент память можно настроить как родную.

Ценник у памяти несколько выше, чем у других производителей, но это компенсируется высочайшим качеством и потрясающей производительностью.

В первых PC - персональных компьютерах измерялась несколькими килобайтами, затем счет пошел на мегабайты, а теперь уже на гигабайты. В свое время объема памяти DDR 256 Mb вполне было достаточно для работы Windows XP, а большинство игр и вовсе не требовали большого объема памяти DDR.

Однако время не стоит на месте и выбор оперативной памяти расширился. Сегодня можно купить и установить оперативную память DDR3 или DDR4 в любом компьютерном магазине. Современные операционные системы и программное обеспечение требуют использование памяти с высокой пропускной способностью.

В настоящее время в компьютерных магазинах можно купить оперативную память любых типов и любого объема. Различий в стоимости памяти между DDR3 и DDR4 практически нет. Стоимость определяет лишь пропускная способность. Память одинакового объема может стоить несколько десятков долларов или несколько сотен, и вовсе не значит, что дорогой вариант будет лучше. Все определяется требованиями программного обеспечения и ресурсы памяти не будут использованы по максимуму.

Оперативная память (ОЗУ - оперативное запоминающее устройство ) - часть системы памяти компьютера, в которую процессор может обратиться за одну операцию.

Во время работы компьютера в оперативной памяти хранятся данные запущенной программы, которые обрабатывает центральный процессор, иначе выполняет функцию посредника между программой и процессором. Объем таких данных изменяется в реальном времени и вся информация, обрабатываемая ОЗУ исчезает после выключения компьютера.

Спустя годы работы компьютера, бывает необходима замена обперативной памяти для ускорения работы

В современных компьютерах, выполнена по технологии DRAM (Dynamic random access memory - динамическая память с произвольным доступом).

Наши специалисты помогут Вам определиться с выбором, подберет необходимый тип памяти и установит на Ваш стационарный компьютер или ноутбук. В Казани цена не более 300р.

При выборе оперативной памяти необходимо учитывать следующие характеристики:

  • Тип памяти
  • Пропускная способность памяти
  • Латентность (тайминги)
  • Объем памяти

тип оперативной памяти

В зависимости от форм - фактора материнской платы будет зависеть тип используемой оперативной памяти. Например, в разъем для подключения типа памяти DDR2 невозможна установка оперативной памяти типа DDR3. Форм - факторы предназначены для предотвращения ошибочного подключения оборудования. Модуль одного типа памяти невозможно вставить в разъем предназначенный для другого типа, тем самым исключается возможность повреждения модуля и самой материнской платы.

DDR

DDR (double data rate - двойная скорость передачи данных) - Модуль памяти (PC-200, PC-400) имеет 184 контакта и стандартное напряжение питания 2,5 В, в настоящее время этот тип памяти устарел и практически не используется.

DDR2

DDR2 Устаревший используемый тип памяти. DDR2 позволяет делать выборку сразу 4 бита данных за такт (4n-prefetch), а DDR только 2 бита за такт (2n-prefetch), т.е. способна передавать на каждом такте шины памяти 4 бита информации из ячеек микросхемы памяти в буферы ввода-вывода. Модуль выполнен в виде печатной платы с 240 контактами (по 120 с каждой стороны) и имеет стандартное напряжение питания 1,8 В.

DDR3

DDR3 - позволяет за такт делать выборку 8 бит данных (8n-prefetch). Модуль также как и DDR2 выполнен на плате с 240-контактами, а стандартное питающее напряжение всего 1,5 В. Энергопотребление памяти DDR3 приблизительно на 40% меньше, чем у памяти DDR2, что очень важно для ноутбуков и мобильных систем.

Типы памяти

Тип модулей Рейтинг Частота шины Пропускная способность (одноканальный режим), Мб/сек Пропускная способность (двухканальный режим), Мб/сек
PC2-5300 DDR2-667 333 МГц 5300 10600
PC2-6400 DDR2-800 400 МГц 6400 12800
PC2-8500 DDR2-1066 533 МГц 8500 17000
PC3-6400 DDR3-800 400 МГц 6400 12800
PC3-8500 DDR3-1066 533 МГц 8500 17000
PC3-10667 DDR3-1333 667 МГц 10600 21200
PC3-12800 DDR3-1600 800 МГц 12800 25600

Наши инженеры на выезде произведут замену оперативной памяти на вашем ноутбуке или комьпютере быстро. Цена в пределах 300р. по Казани.

пропускная способность

пропускная способность непосредственно влияет на скорость работы компьютера. Для оптимального взаимодействия, пропускная способность шины оперативной памяти должна соответствовать пропускной способности шины процессора.

Например, если в системе установлен процессор Intel core 2 duo E6750 с системной шиной (FSB) 1333 МГц и пропускной способностью 10600 Мб/с, то можно установить 2 модуля памяти PC2-5300 с пропускной способностью 5300 Мб/с каждая, которые в паре будут обеспечивать ту же пропускную способность (10600 Мб/с).

Установка двух модулей памяти - позволяет использовать двухканальный режим. Для двухканального режима необходимо, чтобы модули памяти были одного производителя, объема, и частоты. Оптимальней всего использовать так называемые Kit-ы. Kit - это набор, обычно состоящий из двух модулей памяти, которые уже оптимизированы для работы в двуканальном режиме. Конечно, можно использовать память с большей пропускной способностью, типа PC2-6400, но существенного увеличения производительности вы не получите. К тому же модули с большей частотой имеют большие тайминги (задержки), которые ухудшают быстродействие. К примеру, производительность в играх будет выше, если ниже тайминги.

латентность (тайминги)

латентность (тайминги ) - Временные задержки сигнала. Значения таймингов обычно имеют вид, например, 3-3-3-9 или 4-4-4-12. По порядку это CAS Latency, RAS to CAS Delay, RAS Precharge Time и DRAM Cycle Time Tras/Trc. Проще говоря, чем ниже тайминги оперативной памяти, тем лучше при условии работы в двуканальном режиме двух идентичных модулей.

объем оперативной памяти

объем оперативной памяти - чаще всего применяются модули объемом 512Мб, 1024Мб (1Гб) и 2048Мб (2Гб). Оперативной памяти не бывает много, чем больше будет, тем лучше.

Для компьютера, который используется для выхода в интернет и для работы с офисными программами, вполне достаточно установленой оперативной памяти 1Гб. Для оцифровки видео, работы с графикой и для игр нужно иметь, как минимум 2 или 4Гб.

Из наиболее стабильно работающих модулей памяти можно выделить следующие бренды:

Samsung, Corsair, OCZ, Transcend, Kingston, Patriot.

Специалисты нашей компьютерной помощи помогут выявить неисправность оперативной памяти , момогут с выбором и произведут установку на дому за считанные минуты.