Технология DWDM

Плотное спектральное уплотнение DWDM (dense wavelength-division multiplexing) - это современная технология передачи большого числа оптических каналов по одному волокну , которая лежит в основе нового поколения сетевых технологий. В настоящее время телекоммуникационная индустрия претерпевает беспрецедентные изменения, связанные с переходом от голосо-ориентированных систем к системам передачи данных, что является следствием бурного развития Internet технологий и разнообразных сетевых приложений. С крупномасштабным развертыванием сетей передачи данных происходит модификация самой архитектуры сетей. Именно поэтому требуются фундаментальные изменения в принципах проектирования, контроля и управления сетями. В основе нового поколения сетевых технологий лежат многоволновые оптические сети, базирующиеся на плотном волновом мультиплексировании DWDM (dense wavelength-division multiplexing).

Описание технологии

Самым важным параметром в технологии плотного волнового мультиплексирования бесспорно является расстояние между соседними каналами. Стандартизация пространственного расположения каналов нужна, уже хотя бы потому, что на ее основе можно будет начинать проведение тестов на взаимную совместимость оборудования разных производителей. Сектор по стандартизации телекоммуникаций Международного союза по электросвязи ITU-T утвердил частотный план DWDM с расстоянием между соседними каналами 100 ГГц (нм), (табл. 1). В тоже время большие дебаты продолжаются вокруг принятия частотного плана с еще меньшим расстоянием между каналами 50 ГГц (нм). Без понимания того, какие ограничения и преимущества имеет каждый частотный план, операторы связи и организации, планирующие наращивание пропускной способности сети, могут столкнуться со значительными трудностями и излишними инвестициями.

Сетка 100 ГГц.

В таблице справа показаны сетки частотного плана 100 ГГц с различной степенью разреженности каналов. Все сетки кроме одной 500/400 имеют равноудаленные каналы. Равномерное распределение каналов позволяет оптимизировать работу волновых конвертеров, перестраиваемых лазеров и других устройств полностью оптической сети, а также позволяет легче выполнять ее наращивание.

Реализация той или иной сетки частотного плана во многом зависит от трех основных факторов:


  • типа используемых оптических усилителей (кремниевого или фтор-цирконатного);

  • скорости передачи на канал - 2,4 Гбит/с (STM-16) или 10 Гбит/с (STM-64);

  • влияния нелинейных эффектов.
Причем все эти факторы сильно взаимосвязаны между собой.

Стандартные EDFA на кремниевом волокне имеют один недостаток - большую вариацию коэффициента усиления в области ниже 1540 нм, что приводит к более низким значениям соотношения сигнал/шум и нелинейности усиления в этой области. Одинаково нежелательны как сильно низкие, так и сильно высокие значения коэффициента усиления. С ростом полосы пропускания минимальное допустимое по стандарту соотношение сигнал/шум возрастает - так для канала STM-64 оно на 4-7 дБ выше, чем для STM-16. Таким образом, нелинейность коэффициента усиления кремниевого EDFA сильней ограничивает размер зоны для мультиплексных каналов STM-64 (1540-1560 нм), нежели чем для каналов STM-16 и меньшей ёмкости (где можно использовать практически всю зону усиления кремниевого EDFA, несмотря на нелинейность).

Сетка 50 ГГц.

Более плотный, пока нестандартизированный частотный план сетки с интервалом 50 ГГц позволяет эффективней использовать зону 1540-1560 нм, в которой работают стандартные кремниевые EDFA. Наряду с этим преимуществом у данной сетки есть свои минусы.

Во - первых , с уменьшением межканальных интервалов возрастает влияние эффекта четырехволнового смешивания, что начинает ограничивать максимальную длину межрегенерационной линии (линии на основе только оптических усилителей).

Во - вторых , малое межканальное расстояние0,4 нм может ограничить возможность мультиплексирования каналов STM-64. Как видно из рисунка, мультиплексирование каналов STM-64 c интервалом 50 ГГц не допустимо, поскольку тогда возникает перекрытие спектров соседних каналов. Только если имеет место меньшая скорость передачи в расчете на канал (STM-4 и ниже), перекрытия спектров не возникает.

В - третьих , при интервале 50 ГГц требования к перестраиваемым лазерам, мультиплексорам и другим компонентам становятся более жесткими, что снижает число потенциальных производителей оборудования, а также ведет к увеличению его стоимости.

Мультиплексоры DWDM

Мультиплексорам DWDM (в отличии от более традиционных WDM) присущи две отличительные черты:


  • использование только одного окна прозрачности 1550 нм, в пределах области С-band 1530-1560 нм и L-band 1570-1600 нм;

  • малые расстояние между мультиплексными каналами, 0,8 или 0,4 нм.

Кроме этого, поскольку мультиплексоры DWDM рассчитаны на работу с большим числом каналов до 32 и более, то наряду с устройствами DWDM, в которых мультиплексируются (демультиплексируются) одновременно все каналы, допускаются также новые устройства, не имеющие аналогов в системах WDM и работающие в режиме добавления или вывода одного и более каналов в/из основного мультиплексного потока, представленного большим числом других каналов. Так как выходные порты/полюса демультиплексора закреплены за определенными длинами волн, говорят, что такое устройство осуществляет пассивную маршрутизацию по длинам волн. Из-за малых расстояний между каналами и необходимости работы с большим числом каналов одновременно, изготовление мультиплексоров DWDM требует значительно большей прецизионности по сравнению c WDM мультиплексорами (использующими обычно окна прозрачности 1310 нм, 1550 нм или дополнительно область длин волн в окрестности 1650 нм). Также важно обеспечить высокие характеристики по ближним (коэффициент направленности) и дальним (изоляция) переходных помех на полюсах DWDM устройства. Все это приводит к более высокой стоимости DWDM устройств по сравнению WDM.

На рисунке "а" показана типовая схема DWDM мультиплексора с зеркальным отражательным элементом. Рассмотрим его работу в режиме демультиплексирования. Приходящий мультиплексный сигнал попадает на входной порт. Затем этот сигнал проходит через волновод-пластину и распределяется по множеству волноводов, представляющих дифракционную структуру AWG (arrayed waveguide grating). По-прежнему сигнал в каждом из волноводов остается мультиплексным, а каждый канал остается представленным во всех волноводах. Далее происходит отражение сигналов от зеркальной поверхности и в итоге световые потоки вновь собираются в волноводе-пластине, где происходит их фокусировка и интерференция - образуются пространственно разнесенные интерференционные максимумы интенсивности, соответствующие разным каналам. Геометрия волновода-пластины , в частности расположение выходных полюсов, и длины волноводов структуры AWG рассчитываются таким образом, чтобы интерференционные максимумы совпадали с выходными полюсами. Мультиплексирование происходит обратным путем.

Другой способ построения мультиплексора базируется не на одной а на паре волноводов-пластин, (рис. б). Принцип действия такого устройства аналогичен предыдущему случаю, за исключением того, что здесь для фокусировки и интерференции используется дополнительная пластина.

DWDM мультиплексоры, являясь пассивными устройствами, вносят большое затухание в сигнал. Например, потери для устройства (рис. 1а), работающего в режиме демультиплексирования составляют 4-8 дБ, при дальних переходных помехах

Транспондеры и трансиверы


Для передачи данных на длине волны из сетки DWDM можно использовать два типа устройств - трансиверы и транспондеры DWDM. Трансиверы DWDM обладают различными форм-факторами и могут использоваться в пассивных решениях DWDM.

В отличии от трансиверов, транспондеры позволяют преобразовать длину волны излучения оконечного устройства в длину волны DWDM для передачи в мультиплексор. На входы оптического мультиплексора поступают оптические сигналы, параметры которых соответствовуют стандартам, определённым рекомендациями G.692. Транспондер может иметь имеет разное количество оптических входов и выходов. Но если на любой вход транспондера может быть подан оптический сигнал, параметры которого определены рек. G.957, то выходные его сигналы должны по параметрам соответствовать рек. G.692. При этом, если уплотняется m оптических сигналов, то на выходе транспондера длина волны каждого канала должна соответствовать только одному из них в соответствии с сеткой частотного плана ITU.

Применение оптических усилителей

Развитие технологии оптического усиления на основе EDFA сильно изменило методологию конструирования волоконно-оптических систем связи. Традиционные волоконно-оптические системы используют повторители-регенераторы, повышающие мощность сигнала, (рис. 3а). Когда длина между удаленными узлами начинает превосходить по условиям затухания сигнала максимальную допустимую длину пролета между соседними узлами , в промежуточных точках устанавливаются дополнительные регенераторы, которые принимают слабый сигнал, усиливают его в процессе оптоэлектронного преобразования, восстанавливают скважность, фронты и временные характеристики следования импульсов, и после преобразования в оптическую форму передают дальше правильный усиленный сигнал, в том же виде, в каком он был на выходе предыдущего регенератора. Хотя такие системы регенерации работают хорошо, они являются весьма дорогими и, будучи установленными, не могут наращивать пропускную способность линии.

На основе EDFA потери мощности в линии преодолеваются путем оптического усиления, (рис. 3б). В отличии от регенераторов, такое "прозрачное" усиление не привязано к битовой скорости сигнала, что позволяет передавать информацию на более высоких скоростях и наращивать пропускную способность до тех пор, пока не вступают в силу другие ограничивающие факторы, такие как хроматическая дисперсия и поляризационная модовая дисперсия. Также усилители EDFA способны усиливать многоканальный WDM сигнал, добавляя еще одно измерение в пропускную емкость.

Хотя оптический сигнал, генерируемый исходным лазерным передатчиком, имеет вполне определенную поляризацию все остальные узлы на пути следования оптического сигнала , включая оптический приемник, должны проявлять слабую зависимость своих параметров от направления поляризации. В этом смысле оптические усилители EDFA, характеризуясь слабой поляризационной зависимостью коэффициента усиления, имеет ощутимое преимущество перед полупроводниковыми усилителями.

В отличии от регенераторов оптические усилители вносят дополнительный шум, который необходимо учитывать. По этому наряду с коэффициентом усиления одним из важных параметров EDFA является коэффициент шума.

Применение устройств ROADM


Использование перенастраиваемого оптического мультиплексора ввода/вывода (ROADM) дает возможность гибкого развертывания и удаленного конфигурирования спектральных каналов. На любом узле сети ROADM возможно переключение состояния спектрального канала на ввод/вывод и сквозную передачу без прерывания действующих услуг. При работе с перестраиваемым лазером ROADM обеспечивает гибкое управление спектральными каналами. ROADM позволяют строить сети с несколькими кольцами или смешанные сеть: на основе технологии селекторного переключения спектральных каналов (WSS).

Построение сетей DWDM


Городские DWDM сети, как правило, строят с использованием кольцевой архитектуры, что позволяет применять механизмы защиты на уровне DWDM при скорости восстановления не более 50 мс. Возможно построение сетевой инфраструктуры на оборудовании нескольких поставщиков с дополнительным уровнем распределения на базе оборудования Metro DWDM. Этот уровень вводится для организации обмена трафиком между сетями с оборудованием разных фирм.

В технологии DWDM минимальная дискретность сигнала - это оптический канал, или длина волны. Использование целых длин волн с емкостью канала 2,5 или 10 Гбит/с для обмена трафиком между подсетями оправдано для построения больших транспортных сетей. Но транспондеры-мультиплексоры позволяют организовать обмен трафиком между подсетями на уровне сигналов STM-4/STM-1/GE. Уровень распределения можно строить и на базе SDH-технологии. Но DWDM имеет большое преимущество, связанное с прозрачностью каналов управления и служебных каналов (например, служебной связи). При упаковке SDH/ATM/IP-сигналов в оптический канал структура и содержимое пакетов не изменяются. Системы DWDM проводят только мониторинг отдельных байтов для контроля правильности прохождения сигналов. Поэтому соединение подсетей по инфраструктуре DWDM на отдельно взятой длине волны можно рассматривать как соединение парой оптических кабелей.

При использовании оборудования разных производителей, две подсети передачи данных одного производителя соединяют через DWDM-сеть другого производителя. Система управления, подсоединенная физически к одной подсети, может управлять и работой другой подсети. Если бы на уровне распределения использовалось SDH-оборудование, то это было бы невозможно. Таким образом, на базе DWDM сетей можно объединять сети разных производителей для передачи разнородного трафика.

SFP (WDM, CWDM, DWDM) – ЧТО ЭТО? ДЛЯ ЧЕГО НУЖНЫ?

Технологии спектрального уплотнения (WDM).

Спектральное уплотнение основывается на методе уплотнения оптических каналов. Принцип данного метода заключается в том, что каждый информационный поток передается по одному оптическому волокну на разной длине волны (на разной несущей частоте), отстоящей друг от друга на расстоянии 20 нм.

С помощью специальных устройств – оптических мультиплексоров – потоки объединяются в один оптический сигнал, который вводится в оптическое волокно. На приемной стороне производится обратная операция – демультиплексирование, осуществляемая с применением оптических демультиплексоров. Это открывает поистине неисчерпаемые возможности как для увеличения пропускной способности линии, так и построению сложных топологических решений с использованием одного волокна.

При выборе количества каналов следует обратить внимание на тип используемого одномодового волокна!
Например, в волокнах типа G.652B (волокно с водяным пиком на длине волны 1383 нм) на коротких длинах волн большие потери на излучение, в связи с этим допустимое расстояние передачи сокращается и количество спектральных каналов будет меньше требуемого.

В системах Coarse WDM, в соответствии с рекомендацией МСЭ G.694.2 следует использовать не более 18 несущих с шагом 20 нм: 1270, 1290, 1310 … 1570, 1590, 1610, т.е. если общая требуемая ширина диапазона длин волн не превышает 340 нм. Следует учесть, что на краях такого широкого диапазона затухание достаточно велико, особенно в области коротких волн. Увеличить число каналов до 18 позволили так называемые волокна с нулевым водяным пиком (ZWPF, Zero Water Peak Fiber; LWPF, Low Water Peak Fiber), параметры которых определяет рекомендация ITU-T G.652.C/D. В волокнах данного типа устранен пик поглощения на длине волны 1383 нм и величина затухания на этой длине волны составляет порядка 0,31 дБ/км.

Волокно G.653 оказалось непригодным для новой стремительно развивающейся технологии спектрального мультиплексирования WDM из-за нулевой дисперсии на 1550 нм, приводившей к резкому возрастанию искажений сигнала от четырехволнового смешения в этих системах. Наиболее приспособленным для плотного и высокоплотного WDM (DWDM и HDWDM) оказалось оптическое волокно G.655, а для разреженного WDM – недавно стандартизованное оптическое волокно G.656
Создание волокон без «водяного пика», позволило использовать в системах связи все волны в диапазоне от 1260 до 1625 нм, – т.е. там, где кварцевое оптическое волокно обладает наибольшей прозрачностью.

ОСНОВНОЕ ОБОРУДОВАНИЕ

Мультиплексоры/демультиплексоры (MUX/DEMUX); позволяют суммировать и разделять оптические сигналы.

позволяют выделить и добавить в волокно сигнал по определенным несущим частотам.

В зависимости от поставленной задачи конфигурация мультиплексора/демультиплексора (Mux/Demux) определяется по следующим характеристикам:

Двухволоконный мультиплексор (2 fiber)
Одноволоконный мультиплексор (1 fiber (single fiber) или bidirectional)
4-х или 8-ми канальный мультиплексор (8 или16 длин волн), работающий на одном волокне
8-ми или 16-ти канальный, работающий на двух волокнах
мультиплексор с двумя «общими» (COMMON) выводами для реализации «кольцевой» топологии
Для топологий «Точка-Точка» или «Кольцо» необходима «попарная» (порты Tx–Rx) комплектация мультиплексоров – Mux/Demux Type I , Mux/Demux Type II
Коннекторы – FC,SC,LC,ST,FA,SA

Поставка Мультиплексоров возможна в следующих вариантах исполнения:
Стоечные 19” 1RU
В пластиковом корпусе (для монтажа на стену или в муфту)
По виду разъема – LC, SC, проч.


SFP (Small Form Factor Pluggable) трансиверы (SFP,SFP+, X2, XFP) –
формируют и принимают оптические сигналы (определенных длин волн) в CWDM-системе; переводят сигнал из электрического в оптический и обратно. Модуль SFP объединяет в себе сразу передатчик (transmitter) и приемник (receiver). Поэтому он поддерживает одновременную передачу и прием данных по двум линкам в рамках единого канала. Еще со времен радио, такие устройства называются transceiver. Именно поэтому модули SFP называют трансиверами.

Каждый SFP трансивер работает по двум волокнам и, в отличие от стандартных двухволоконных трансиверов 1000Base LX, оперирует двумя разными длинами волн – широкополосный приемник работает с одной длиной волны и передатчик с другой.
Для образования канала данных в системе SFP трансиверы комплектуются «попарно».

Трансиверы так же отличаются по мощности сигнала (километражу), т.е работают на разные расстояния.

Для более сильного уплотнения оптического сигнала используются «цветные» SFP модули, работающие в определенном диапазоне длин волн (CWDM) . Такие SFP трансиверы предназначены для формирования оптических сигналов «основной несущей» с 1270 по 1610нм (шаг 20нм).

Доступны SFP-модули, работающие как по одному, так и по двум волокнам с пропускной способностью 1.25, 2.5 и 4.25Gbps. Данные модули могут быть установлены непосредственно в коммутирующее оборудование практически любого производителя, делая возможной бесшовную интеграцию CWDM в существующую инфраструктуру. Один и тот же модуль может служить интерфейсом Gigabit Ethernet, Fibre Channel или SDH, что существенно добавляет гибкости решения.

Также возможна установка CWDM SFP модулей в шасси медиаконвертеров. Использование шасси – наиболее гибкое решение, полностью исключающее проблемы несовместимости оборудования. Используя шасси, вы получаете на выходе стандартные порты 1000BASE-T Gigabit Ethernet, что позволяет отказаться от дорогостоящих коммутаторов с SFP-портами.

Отдельное внимание стоит обратить на уплотнение каналов 10 Гбит/с. Еще три года назад не существовало трансиверов, работающих на скоростях 10 Гбит/с и поддерживающих длины волн частотной сетки систем разреженного спектрального уплотнения, в настоящее время такие модули появились, однако, их использование накладывает существенные ограничения на возможности системы, по сравнению с уплотнением каналов 1,25 Гбит/с и 2,5 Гбит/с.

В настоящее время не существует лазеров, поддерживающих скорость 10 Гбит/с и работающих в диапазоне длин волн 1350-1450 нм, поэтому максимальное количество уплотняемых каналов 10 Гбит/с не может превышать 12 при использовании двух волокон стандарта G.652D. Помимо этого, при использовании каналов 10 Гбит/с необходимо учитывать, что максимальный оптический бюджет таких модулей в настоящий момент составляет не более 28 dBm, что соответствует дальности работы примерно в 80 километров по одномодовому волокну. В случаях, если необходимо уплотнить и передать более 12 каналов 10 Гбит/с, в т.ч. на расстояния больше 80 километров, используется оборудование DWDM.

OADM модули -мультиплексоры ввода/вывода; позволяют выделить и добавить в волокно сигнал по определенным несущим.

Основные свойства:
Ввод/вывод одного канала
Пассивная оптика
Низкие вносимые потери для транзитных каналов
Выделенная длина волны конечному пользователю

Принципиально выделяются OADM модули одноканальные и двухканальные. Их отличие заключается в способности принимать и получать оптический сигнал от одного или двух мультиплексоров и физически обусловлено наличием одного или двух приемо-передающих блоков. Соответственно одноканальный OADM модуль имеет один приемо-передающий блок и способен работать только с одним мультиплексором в «одну сторону». Двухканальный OADM модуль имеет два приемо-передающих блока и способен работать «в две стороны» с двумя мультиплексорами / демультиплесорами.

Приемо-передающий блок одноканального OADM модуля имеет четыре интерфейса:

Com порт – получает сигнал со стороны мультиплексора
Express порт – пропускает сигнал на другие элементы системы
Add порт – добавляет в линию канал на определенной длине волны,
Drop порт – извлекает из линии канал на определенной длине волны.

Ограничений по протоколам или ширине полосы такие устройства не имеют.
Соответственно двухканальный OADM модуль обладает двумя дополнительными портами Add и Drop.
В случае использования двухволоконной системы так же добавляются порты Com2 и Express2.
Одноканальный OADM модуль работает в паре с одним SFP трансивером, двухканальный OADM – с двумя

Терминально-транзитный модуль OADM (модуль drop/pass ) отводит один канал из магистрали и направляет его к локальному порту. Остальные каналы пропускаются непосредственно к другим узлам сети.

Одноканальный мультиплексирующий модуль OADM (модуль drop/add) имеет два локальных интерфейса. Первый отводит один канал из магистрали и направляет его к локальному порту, второй – добавляет этот канал обратно в магистраль в противоположном направлении. Такой модуль необходим при построении сети топологии «кольцо».

Поставка OADM модулей возможна в вариантах исполнения:
Стоечные 19” 1RU
В пластиковом корпусе (для монтажа на стену или в муфту)
Разъемы – LC, SC, проч.

Основными системами спектрального уплотнения являются:

- WDM (Wavelength Division Multiplexing)

- CWDM (Coarse Wavelength Division Multiplexing)

Так что такое WDM ?

Технология для добавления оптических сигналов с разными длинами волн , передающихся одновременно по одному волокну 2 и более сигнала разделяемых на дальнем конце по длинам волн. Наиболее типичные (2- канальный WDM) комбинируют длины волн 1310 нм и 1550 нм в одном волокне.

Двух-канальный WDM (и трех канальный) может быть использован для быстрого и простого добавления дополнительной (или двух дополнительных) длин волн. Он очень прост для установки и подключения и очень недорогой. В большинстве случаев, WDM наиболее экономичное решение при нехватке волокна в кабеле, дающее выигрыш волокна 2 к 1 или 3 к 1 за счет объединения длин волн 1310 нм, 1550 нм и 1490 нм в одном волокне.

В случае, когда требуется больше каналов для расширения существующей волоконно-оптической инфраструктуры, CWDM обеспечивает эффективное решение для оптических пролетов небольшой длины (до 80 км). CWDM может просто и быстро добавить до 18 дополнительных длин волн на стандартизованных ITU частотах. Она идеальна для сетей умеренных размеров с поперечными размерами до 100 км. Так как расстояния между длинами волн составляет 20 нм, то менее дорогие лазеры могут использоваться, что обеспечивает очень низкую стоимость. Системы CWDM, хотя и являются многоканальными, но не имеют никаких механизмов оптического усиления и ограничения в дальности определяются по каналу с максимальным затуханием. Более того, каналы из области от 1360нм до 1440 нм могут испытывать наибольшее затухание (от 1 до 2 dB/км) из-за водяного пика в этой области для некоторых типов оптического кабеля.

Там где требуется высокая емкость или передача на большие расстояния, решения DWDM - предпочтительный метод для увеличения емкости волокна. С ее высоко-точными лазерами, оптимизированными для работы в окне 1550 нм (для уменьшения потерь), системы DWDM являются идеальным решением для более требовательных сетей. Системы DWDM могут использовать EDFA для усиления всех длин волн в DWDM окне и увеличение длины передачи до 500 км.

Системы DWDM обычно ограничены по дальности 4-5 участками усиления из-за шумов усиленного спонтанного излучения (ASE, Amplified Spontaneous Emissions) в EDFA. Имеются средства моделирования, позволяющие точно определить сколько EDFA может быть установлено. На длинных участках (> 120 км) может создавать проблемы дисперсия, что требует установки модулей компенсации дисперсии. Полоса DWDM ограничена длинами волн в пределах от 1530 нм до 1565 нм диапазоном усиления EDFA.

Типы решений:

1. Точка – точка.

Добавление спектральной системы с топологией «точка-точка» в оптическую систему является простым и экономически выгодным решением проблемы нехватки волокон.
Системы с подобной топологией характерны в решении задач одновременной передачи большого числа потоков данных для увеличения количества предоставляемых сервисов (видео, голос и т.д.). При этом используются волокна уже существующей оптической транспортной сети. При этом режиме работы информация передается по каналам между двумя точками. Для успешной передачи данных на расстояние до 50-80 км необходимы мультиплексоры/демультиплексоры в тех узлах, где будет происходить объединение информационных потоков и последующее их разъединение.

Соединение с ответвлениями

Такая архитектура реализует передачу информации от одного узла к другому с промежуточными узлами на этом пути, где возможен ввод и отвод отдельных каналов с применением модулей OADM. Максимальное количество ответвлений определяется количеством дуплексных каналов передачи (например, 4 или и оптическим бюджетом линии. При расчетах нужно помнить о том, что каждый OADM модуль вносит затухание, в результате чего общая протяженность тракта соответственно снижается. Оптический канал можно извлечь в любой точке тракта.

В данном случае между двумя мультиплексорами / демультиплексорами устанавливаются OADM модули (двухканальные).
При этом каждый двухканальный OADM модуль необходимо укомплектовывать двумя SFP трансиверами.

Точка с ответвлениями.

Принципиальное отличие от первого варианта – отсутствие второго мультиплексора / демультиплексора. Таким образом, обмен сигналами происходит между центральным узлом связи и конечным оборудованием на разных участках линии. Такая архитектура представляется перспективной с экономической точки зрения, т.к. фактически позволяет исключить из сети коммутатор уровня агрегации при значительной экономии в волокне. При этом расстояние от OADM модуля (одноканального) до места размещения конечного оборудования (коммутатор, муршрутизатор, медиаконвертор) ограничено лишь мощностью сигнала в линии и вносимыми потерями от оборудования уплотнения.

Достоинства
Экономия оптического волокна - система спектрального уплотнения позволяет передавать по одному волокну до 8 каналов с пропускной способностью до 2,5 Gb/s на канал
Независимость от электропитания - питание необходимо только для активного оборудования
Отсутствие проблем «падения», перезагрузок и пр.
Отсутствие необходимости организации постоянного доступа к местам размещения элементов системы - существуют OADM модули в исполнении для размещения в оптических муфтах
Снижение уровня влияния «человеческого фактора» – отсутствие активных компонентов, требующих настройки, управления и пр.
Значительное снижение стоимости владения - снижение уровня эксплуатационных расходов
Относительно невысокая стоимость, возможность отказа от оборудования уровня агрегации
Максимальная дальность работы составляет 80 и более километров
Независимость от клиентских протоколов – передача до 18-ти независимых сервисов по двум парам оптических волокон; прозрачность для всех протоколов передачи данных
Наличие различных видов оборудования для монтажа в различных условиях: в стойку, в муфту, на стену.

Какие технологии могут применять операторы для увеличения возможностей существующих оптических сетей?

Имеются три легко-доступные и простые для установки и использования технологии спектрального уплотнения или мультиплексирования с разделением по длинам волн:

  • 2-канальный WDM;
  • грубое спектральное мультиплексирование (CWDM);
  • плотное спектральное уплотнение (DWDM).

Эти технологии могут предложить оператору одну дополнительную длину волны (или виртуальное волокно), 18 добавочных длин волн или до 160 добавочных длин волн. Все эти технологии используют существующее волокно в операторской сети.

Что такое WDM (Wavelength Division Multiplexing)?

Технология для добавления двух или более оптических сигналов с разными длинами волн, передающихся одновременно по одному волокну и разделяемых на дальнем конце по длинам волн. Наиболее типичные приложения (2- канальный WDM) комбинируют длины волн 1310 нм и 1550 нм в одном волокне.

Что такое CWDM (Coarse Wavelength Division Multiplexing)?

Технология для объединения до 18 ITU длин волн и передаче их одновременно в одном волокне с последующим разделением на дальнем конце. Стандарт ITU для CWDM определяет 18 каналов от 1271 нм до 1611 нм с расстоянием между соседними каналами в 20 нм.

Что такое DWDM (Dense Wavelength Division Multiplexing)?

Технология для объединения до 160 длин волн, передаче их одновременно в одном волокне с последующим разделением на дальнем конце. DWDM использует расстояния между длинами волн вплоть до 25ГГц и требует применение лазеров с очень строгими допусками и стабильностью излучения. Полоса длин волн DWDM занимает округленно от 1530 нм до 1565 нм. В этой же полосе работают легированные эрбием усилители оптического сигнала (EDFA).

В чем основное различие между приложениями WDM, CWDM & DWDM?

В большинстве случаев, WDM наиболее экономичное решение при нехватке волокна в кабеле, дающее выигрыш волокна 2 к 1 или 3 к 1 за счет объединения длин волн 1310 нм, 1550 нм и 1490 нм в одном волокне. В случае, когда требуется больше каналов для расширения емкости существующей волоконно-оптической инфраструктуры, CWDM обеспечивает эффективное решение для оптических пролетов небольшой длины (до 80 км). За невысокую стоимость CWDM может обеспечить увеличение емкости существующего волокна 18 к 1. С текущими характеристиками потерь оптического сигнала в окнах прозрачности 1310 нм и 1490 нм приложения WDM и CWDM наилучшим образом подходят для коротких расстояний. Там где требуется высокая емкость или передача на большие расстояния, решения DWDM — предпочтительный метод для увеличения емкости волокна. С ее высоко-точными лазерами, оптимизированными для работы в окне 1550 нм (для уменьшения потерь), системы DWDM являются идеальным решением для более требовательных сетей. Системы DWDM могут использовать EDFA для усиления всех длин волн в DWDM окне и увеличение длины передачи до 500 км.

Какие преимущества каждой из этих трех WDM технологий?

Двух-канальный WDM (и трех канальный) может быть использован для быстрого и простого добавления дополнительной (или двух дополнительных) длин волн. Он очень прост для установки и подключения и очень недорогой.

CWDM может просто и быстро добавить до 18 дополнительных длин волн на стандартизованных ITU частотах. Она идеальна для сетей умеренных размеров с поперечными размерами до 100 км. Так как расстояния между длинами волн составляет 20 нм, то менее дорогие лазеры могут использоваться, что обеспечивает очень низкую стоимость для решений с умеренной емкостью.

DWDM предлагает высоко-емкие и дальнобойные решения для участков ВОЛС с высоким ростом потребностей в волокне и где необходима передача на большие расстояния. Системы DWDM могут быть развернуты за относительно низкую начальную стоимость и каналы (длины волн) легко добавляются по мере роста. Усилители EDFA вместе с компенсаторами дисперсии могут увеличить дальность систем до нескольких тысяч километров.

Какие ограничения каждой из этих технологий?

Двух (или трех) канальная WDM ограничена одним или двумя каналами, которые могут быть добавлены к каналу 1310 нм. Дальность системы обычно ограничена потерями в канале 1310 нм.

Системы CWDM, хотя и являются многоканальными, но не имеют никаких механизмов оптического усиления и ограничения в дальности определяются по каналу с максимальным затуханием. Более того, каналы из области от 1360нм до 1440 нм могут испытывать наибольшее затухание (от 1 до 2 dB/км) из-за водяного пика в этой области для некоторых типов оптического кабеля.

Системы DWDM обычно ограничены по дальности 4-5 участками усиления из-за шумов усиленного спонтанного излучения (ASE, Amplified Spontaneous Emissions) в EDFA. Имеются средства моделирования, позволяющие точно определить сколько EDFA может быть установлено. На длинных участках (> 120 км) может создавать проблемы дисперсия, что требует установки модулей компенсации дисперсии. Полоса DWDM ограничена длинами волн в пределах от 1530 нм до 1565 нм диапазоном усиления EDFA.

Что такое Reach Extension (увеличение дальности) и как я могу это использовать?

Увеличение дальности (Reach extension) — общепринятый термин для усиления или воссоздания сигнала, чтобы позволить ему пройти большую дистанцию. Из-за аналоговой природы передачи, оптический сигнал, когда передается через оптическое соединение, деградирует из-за дисперсии, потери мощности, перекрестных помех и нелинейных эффектов в волокне и оптических компонентах. Для борьбы с этими нежелательными эффектами используется два распространенных подхода: Регенерация и Усиление. Регенерация — воссоздание сигнала путем конвертирования оптического сигнала к электрическому сигналу, его обработка и затем конвертирование обратно к оптическому сигналу. Усиление — увеличение амплитуды (мощности dB) оптического сигнала без конвертирования к электрическому сигналу.

Что такое регенерация 1R, 2R и 3R?

Имеется три различных уровня оптической регенерации, которые могут быть применены, чтобы увеличить дальность передачи.

  • 1R-amplification : Это техника регенерации добавляет оптическую мощность к сигналу без воздействия на его форму или синхронность. EDFA просто добавляет фотоны во входящий оптический сигнал на определенной длине волны и фазе этого сигнала. Это не восстанавливает и не ресинхронизует входящий сигнал. Побочный эффект EDFA — создание шума усиленного спонтанного излучения, который аккумулируется с каждым EDFA в линии и может быть «очищен» только конвертированием оптического сигнала к электрическому виду и обратно. Типичное количество EDFA в каскадном соединении не более 4 или 5.
  • 2R-amplification and reshaping : Эта техника усиливает и восстанавливает форму деградированного сигнала. Форма воссозданного сигнала близка к оригинальному сигналу, но длительность временных циклов (синхронность) не восстанавливается. Накопление джиттера приводящее к потере синхронизации будет ограничивать количество каскадно-установленных 2R регенераторов.
  • 3R-regeneration, reshaping and re-timing : Вместе с усилением и восстановлением 3R регенерация также воссоздает оригинальную длительность циклов (синхронность) исходного сигнала, таким образом, создавая идеальную возможность для увеличения жизни синхронных и асинхронных сигналов. Почти неограниченное количество 3R регенераторов могут быть установлены на пути следования сигнала.

Что такое конверсия длин волн и зачем это нужно?

Конверсия длины волны — преобразование из одной длины волны в другую для транспортировки. Из-за характеристик затухания сигналов 1310 нм и 850 нм, иногда необходимо конвертировать эти сигналы к длине волны 1550 нм для передачи их поверх длинных пролетов оптического волокна, получая выгоду от низких потерь на 1550 нм. Конверсия длин волн также используется для преобразования широкополосных оптических сигналов, таких как 1310нм или 1550нм к дискретным ITU CWDM или DWDM длинам волн, что позволяет комбинировать множество длин волн при передаче по одному волокну.

Если я конвертирую мой 1310 нм сигнал к длине волны xWDM, нужно ли мне конвертировать его обратно к 1310 нм перед приемом на дальнем конце?

Нет, обычно не требуется. Большинство оптического оборудования произведенного в последние 10 лет скорее всего имеет широкополосный приемник, который будет работать в диапазоне от ~1260нм до ~1620нм. Это означает, что интерфейс, который передает на 1310нм с большой вероятностью примет сигнал, который был конвертирован для DWDM или для CWDM приложений.

Спектральное уплотнение каналов (Wavelength division multiplexing, WDM, буквально мультиплексирование с разделением по длине волны) - технология, позволяющая одновременно передавать несколько информационных каналов по одному оптическому волокну на разных несущих частотах.

Традиционные технологии телекоммуникаций позволяют по одному оптическому волокну передать только один сигнал. Суть же технологии спектрального, или оптического уплотнения заключается в возможности организации множества раздельных сигналов SDH по одному волокну, а, следовательно, многократном увеличении пропускной способности линии связи.

Основы этой технологии были заложены в 1958, еще до появления самой волоконной оптики. Однако прошло около 20 лет, прежде чем были созданы первые компоненты мультиплексных систем. Первоначально они создавались для лабораторных исследований, и лишь в 1980 году технология спектрального уплотнения WDM была предложена для телекоммуникаций. А еще через пять лет в исследовательском центре компании AT&T была реализована технология плотного спектрального уплотнения (Dense Wavelength Division Multiplexing, DWDM), когда удалось в одном оптическом волокне создать 10 каналов по 2 Gbps.

Технология WDM позволяет существенно увеличить пропускную способность канала (к 2009 году достигнута скорость 15,5 Тбит/с), причем она позволяет использовать уже проложенные волоконно-оптические линии. Благодаря WDM удается организовать двустороннюю многоканальную передачу трафика по одному волокну (в обычных линиях используется пара волокон - для передачи в прямом и обратном направлениях).

Принцип работы систем со спектральным уплотнением

В простейшем случае каждый лазерный передатчик генерирует сигнал на определенной частоте из частотного плана. Все эти сигналы перед тем, как вводятся в оптическое волокно объединяются мультиплексором (MUX). На приемном конце сигналы аналогично разделяются демультиплексором (DEMUX). Здесь, так же как и в SDH сетях, мультиплексор является ключевым элементом.

Передаваемый по технологии WDM световой поток, состоит из различных длин волн (λ).

Рисунок12.1 – Принцип передачи сигналов в WDM

То есть по одному волокну можно передавать более сотни стандартных каналов. Так, аппаратура, используемая при построении DWDM-сети Компании ТрансТелеКом, в максимальной конфигурации позволяет задействовать до 160 длин волн.

Принципиальная схема WDM достаточно проста. Для того чтобы организовать в одном волокне несколько оптических каналов сигналы SDH «окрашивают», то есть меняют оптическую длину волны для каждого такого сигнала. «Окрашенные» сигналы смешиваются при помощи мультиплексора и передаются в оптическую линию. В конечном пункте происходит обратная операция - «окрашенные» сигналы SDH выделяются из группового сигнала и передаются потребителю.

Рисунок12.2 –Мультиплексирование – демультиплексирование сигналов в WDM

Естественно, что для того чтобы передавать по одному волокну множество волновых потоков, технология WDM обеспечена оборудованием особой точности. Так, погрешность длины волны, которую обеспечивает стандартный лазер, применяемый в телекоммуникациях, примерно в сто раз больше, чем требуется в системе WDM.

По мере прохождения по оптическому волокну сигнал постепенно затухает. Для того чтобы его усилить, используются оптические усилители. Это позволяет передавать данные на расстояния до 4000 км без перевода оптического сигнала в электрический (для сравнения, в SDH это расстояние не превышает 200 км).

Рисунок 12.3 – Система предеачи WDM

Преимущества WDM очевидны. Эта технология позволяет получить наиболее масштабный и рентабельный способ расширения полосы пропускания волоконно-оптических каналов в сотни раз. Пропускную способность оптических линий на основе систем WDM можно наращивать, постепенно добавляя по мере развития сети в уже существующее оборудование новые оптические каналы.

В общем случае схема применения технологий WDM может быть представлена так, как указано на рисунке 3.

Рисунок 12.4.

Типовой состав оборудования представляет собой необходимое количество оптических транспондеров, осуществляющих преобразование длин волн и оптический мультиплексор, смешивающий их все в один мультиспектральный сигнал.

Оптический транспондер – устройство, обеспечивающее интерфейс между оборудованием оконечного доступа и линией WDM. Согласно рекомендациям МСЭ G.957 для систем СЦИ (SDH) допустимые значения спектральных параметров на выходных оптических интерфейсах имеют следующие значения: ширина спектральной линии Δλ≈±0.5 нм (для STM -16), а центральная длина волны может иметь любое значение в пределах диапазона 1530... 1565 нм. На входы же оптического мультиплексора должны поступать оптические сигналы, спектральные параметры которых, должны строго соответствовать стандартам, определённым рекомендацией ITU-T G.692. Очевидно, что если на оптические входы мультиплексоров подать сигналы с выходов оптических передатчиков SDH, то мультиплексирование осуществлено не будет. Необходимое соответствие достигается благодаря применению в аппаратуре WDM специального преобразователя длин волн - транспондера. Это устройство может иметь различное количество оптических входов и выходов. Но если на любой вход транспондера может быть подан оптический сигнал, параметры которого определены рекомендации G.957, то выходные его сигналы должны по параметрам соответствовать рекомендации G.692. При этом, если уплотняется m оптических сигналов, то на выходе транспондера длина волны каждого канала должна соответствовать только одному из них в соответствии с сеткой частотного плана ITU.

Оптический (де)мультиплексор CWDM. Основой мультиплексора/демультиплексора является дисперсионный элемент, способный разделить сигналы различных длин волн. В современных CWDM-системах для разделения оптических несущих применяются, как правило, относительно недорогие устройства на основе тонкопленочных фильтров (TFF, Thin Film Filter). Потери, вносимые такими устройствами, составляют около 1 дБ на канал (в реальных системах были получены величины менее 2,5 дБ для 8-канального устройства). Тонкопленочная технология характеризуется высокой развязкой (изоляцией) соседних каналов – порядка 30 дБ, высокой температурной стабильностью – 0,002 нм/°С, что эквивалентно изменению рабочей длины волны на ±0,07 нм при изменении температуры на ±35°С. Для выделения длин волн с разносом 20 нм требуются фильтры с существенно меньшим числом диэлектрических слоев, чем в случае DWDM-фильтров (примерно 50 и 150 слоев соответственно), что положительно сказывается на стоимости.

Мультиплексоры/демультиплексоры, основанные на применении многослойных тонкопленочных фильтров, являются (де)мультиплексорами последовательного типа, то есть один фильтр выделяет один канал. Использование таких устройств в системах со большим числом каналов (на практике больше 4-х) может привести к значительному росту вносимых потерь, и в этом случае иногда используют решеточные (де)мультиплексоры параллельного или гибридного параллельно-последовательного типа. Принцип их работы заключается в том, что приходящий сигнал проходит через волновод-пластину и распределяется по множеству волноводов, фактически представляющих собой дифракционную структуру AWG (arrayed waveguide grating). При этом в каждом волноводе по-прежнему присутствуют все длины волн, т.е. сигнал остается мультиплексным, только распараллеленным. Так как длины волноводов отличаются друг от друга на фиксированную величину, потоки проходят разный по длине путь. В итоге световые потоки собираются в волноводе-пластине, где происходит их фокусировка, и создаются пространственно разнесенные максимумы, под которые и рассчитываются выходные полюса. Физика процесса такая же, как в обычной дифракционной решетке, что и дало название технологии. Мультиплексирование происходит обратным путем.

В последнее время современным магистралам (современным с большой буквы С) перестало хватать стандартных возможностей систем уплотнения как по дальности работы и количеству одновременно используемых каналов, так и по общей пропускной способности системы и возможностям расширения систем уплотнения. В Украине на сетевую арену активно стала выходить технология DWDM, при том как в качестве магистральной системы, так и в качестве локальной системы уплотнения.

Не так давно одному нашему украинскому провайдеру (пальцем просили не показывать, иначе нас сильно ругать будут) потребовалось прокинуть несколько десятков «ЖЭ» на 162 километра (по одному волокну) с желанием в будущем добавить в эту систему еще несколько тех же десятков «ЖЭ». Понятное дело, что «грэйдить» вширь и не бояться того, что лямбды внезапно закончатся, можно только имея DWDM (ну, или очень толстый и очень чёрный, а еще очень длинный и очень многожильный кабель). А если учесть расстояние, на которое нужно доставить гигантское количество пакетов одним пролётом (без регенерации «в поле»), то выбор DWDM является единственно верным и правильным решением.

Чтобы пробить такое серьезное расстояние одним пролётом, было принято решение спроектировать линию, которая включает в себя помимо стандартных мультиплексоров/трансиверов/коммутаторов еще и усилители мощности, компенсаторы дисперсии и красно-синие делители.

Расчеты, произведенные при проектировании системы:

Чувствительность трансиверов к дисперсии (A-Gear SFP+ DWDM 80LC и A-Gear XFP DWDM 80LC) – 1600пс/нм;

Трасса на волокне G.652D, дисперсия в волокне 17пс/(нм*км);

Суммарный показатель дисперсии на трассе 162км: 17пс/(нм*км) * 162км == 2754пс/нм;

Превышение нормы дисперсии: 2754пс/нм – 1600пс/нм == 1154пс/нм – принято решение поставить компенсатор дисперсии A-Gear DMC-FC120 (компенсирует полностью дисперсию в 120км волокна, суммарный показатель дисперсии: -2001пс/нм на длине волны 1545нм, длина волокна в компенсаторе 12,3км);

Бюджет потерь в линии: (162км + 12,3км) * 0,3дБм/км == 52,29дБм;

Оптический бюджет трансиверов (A-Gear SFP+ DWDM 80LC и A-Gear XFP DWDM 80LC) – 26дБм;

Превышение нормы затухания: 52,29дБм – 26дБм == 26,29дБм – принято решение поставить EDFA усилитель A-Gear BA4123 (чувствительность (-10)дБм, максимальная выходная мощность 23дБм) и предусилитель A-Gear PA4325 (чувствительность (-30)дБм, максимальная выходная мощность (-5)дБм).

Итогом стала реально работающая система, стабильная, как сам мир, дальнобойная – не всякая птица долетит, расширяемая, и вообще, самая лучшая. Фото этой системы представлена ниже, а еще ниже мы решили написать небольшой обзор существующих на сегодня DWDM комплектующих, методы их включения, терминологию – постарались охватить всё, что есть по DWDM.

На фото видно (сверху-вниз): коммутатор с трансиверами, два усилителя мощности (бустер и предусилитель), DWDM мультиплексор, снова коммутатор с трансивером и в самом низу (серое, почти не видно) – компенсатор дисперсии. Такой набор оборудования стоит в точке А и в точке Б (точки тоже просили не называть, грозя в телефон толстым кожаным армейским ремнём). Имея такой относительно небольшой и недорогой набор оборудования, легко и просто прострелить 162 километра, что и было достигнуто.

На этой оптимистической ноте вводная часть подходит к концу, а мы начинаем методичный разбор технологии, ставшей «магистральным флагманом» современного мира сетестроения.

1. Что такое DWDM, отличия DWDM от CWDM.

Для тех, кому недостаточно пропускной способности CWDM систем (180Гбит/с - крайний максимум), существует два варианта утоления «траффикового аппетита»: наращивать количетсво волокон (что обычно связано с землекопами, столболазами и вообще прошлый век) или использовать более «продвинутую» технологию уплотнения – DWDM.

DWDM (англ. Dense Wavelength Division Multiplexing – плотное волновое мультиплексирование) – технология уплотнения информационных потоков, при которой каждый первичный информационный поток переносится посредством световых пучков на разных длинах волн, а в оптической линии связи находится суммарный групповой сигнал, сформированный мультиплексором из нескольких информационных потоков.

Заумно. Попробуем разобраться. По аналогии с CWDM (для тех кто в курсе), DWDM – такая же система уплотнения, физически состоящая из устройств, генерирующих информационный поток (медиаконвертеры, маршрутизаторы… ну, Вы сами в курсе) трансиверов (приемо-передатчиков, создающих информационный поток на разных длинах волн невидимого для глаза ИК-излучения), мультиплексоров (устройств, создающих/разделяющих групповой световой сигнал) и оптического волновода (оптоволоконный кабель). Кроме того, в состав DWDM входит группа компонент, предназначенных для усиления/восстановления группового светового сигнала, но, дабы все шло последовательно, об этом будет глубоко ниже.

Сразу определимся со словами, которыми будем оперировать. Каналом в данной статье будем называть информационный поток в одну сторону (одна сторона «говорит» информационный поток, другая этот самый поток «слушает»). Канал располагается на единственной для него несущей, имеющей конкретно определенную длину волны (или частоту). Но, как известно, полноценную Связь невозможно выстроить между парой абонентов, один из которых глухой, а второй – немой. Поэтому для создания одной полноценной линии связи необходимо использовать два физических канала, и эту связку будем именовать «полноценный дуплексный канал ».

Итак, DWDM и CWDM занимаются одним и тем же – уплотнением. В чем же различие? А различие в частотной сетке (или в длинах волн несущих, кому как удобнее) несущих первичных информационных потоков (каналов). И в диапазонах работы самого группового сигнала.

Диапазон работы и частотная (волновая) сетка. Очередные малопонятные слова, в значениях которых попробуем разобраться. Что такое длина волны ? Представим себе синусоиду. Так вот, длина волны – это расстояние между двумя соседними пиками синусоиды. Обычно длина волны обозначается греческой буквой λ (лямбда). Наглядно показано на рисунке ниже:

В стандарте CWDM излучение удобно мерять в длинах волн: 1550нм, 1310нм и проч. (нанометры – 10 -9 метра!). Удобно, в первую очередь, потому, что числа целые. В стандартных CWDM системах расстояние между двумя соседними несущими (каналами) составляет 1610 – 1590 == 20нм (тоже целое! Ну, удобно же!).

Теперь рассмотрим эту же ситуацию со стороны частотного плана, для начала уяснив, что такое частота. Частота – это количество полных колебаний (от пика до пика) электромагнитной волны за секунду (обозначается в Герцах, или Гц). Для простейших расчетов можно рассматривать частоту как скорость света, делённую на длину волны. Рассмотрим информационных поток на несущей 1550нм, его частота примерно равна 300000000/0,00000155 == 193548387096774 Гц, или 193548 ГГц (Гигагерц!). а расстояние между соседними несущими будет 300000000/0,00000020 == 1500000000000000 Гц, или 1500000 ГГц. Совсем неудобно – много цифр и непонятно.

На сегодняшний день CWDM системы работают в диапазоне 1270нм-1610нм, представляя в нем 18 отдельных каналов (1270нм, 1290нм, 1310нм … 1590нм, 1610нм). Но в DWDM все обстоит немного по-другому.

DWDM системы работают в двух диапазонах, нарезанных для CWDM систем, в именно: диапазон С (C-Band) и диапазон L (L-Band). Диапазон C находится в пределах от 1528.77нм (канал С61) до 1577.03нм (канал C01), а диапазон L находится в пределах от 1577.86нм (канал L100) до 1622.25нм (канал L48). Цифры уже пугают, а если еще учесть тот факт, что волновая сетка неравномерна (то есть, расстояние между двумя соседними каналами не всегда одинаковое – от 0.5нм до 0.8нм), то проще запутаться, чем разобраться. Именно поэтому в DWDM системах используется наименование диапазона и нумерация канала в этом диапазоне (например, C35 или L91). Наглядно все обычные каналы DWDM системы представлены на рисунке 1.2, данные по частотам и длинам волн представлены в таблице 1.1:

Рисунок 1.2 – C и L диапазоны DWDM системы в общем диапазоне CWDM-систем.

Таблица 1.1 – обычная 100-гигагерцовая DWDM сетка.

Тут сразу следует сделать несколько оговорок.

Во-первых (и это важно для дальнейшего понимания! ), диапазон С условно разделен на два «цветовых диапазона» - синий (1528нм-1543нм) и красный (1547нм-1564нм). Зачем делить – об этом в последующих статьях, сейчас просто важно отметить для себя, что деление существует.

Во-вторых, L-диапазон только начинает использоваться, и не все производители могут позволить себе сделать оборудование для L-диапазона (таблица 1.1, помечено синим, в таблице отсутствуют каналы L48-L65).

В-третьих, в подписи к таблице фигурирует слово «обычная» - а это значит, что должны быть еще и «необычные» сетки. И они действительно есть.

Как мы выяснили выше, по длинам волн различать DWDM каналы неудобно. А вот по частотам – очень даже, и, если внимательно присмотреться к таблице 1.1, то видно, что разница между двумя соседними каналами всегда равна 100ГГц. И, если рассматривать диапазон C (на данный момент освоенный большинством производителей DWDM систем), то можно вывести суммарное количество каналов в нем – 61 канал. Сразу оговоримся, что, как и в CWDM системах, каждый канал – это информационный поток в одну сторону , а значит, для полноценного обмена данными их необходимо два (30 полноценных дуплексных канала в диапазоне C и 26 – в диапазоне L, всего – 56 полноценных дуплексных канала).

Кроме обычной 100-гигагерцовой сетки используют 200-гигагерцовую сетку (нечетные каналы С-диапазона ). Это связано с тем, что некоторое количество производителей DWDM оборудования не способно производить мультиплексоры для 100-гигагерцовой сетки, т.к. комплектующие для нее достаточно дорогие и должны быть более высокого качества относительно 200ГГц систем. В данной схеме уплотнения присутствует 31 однонаправленный канал связи или 15 полноценных дуплексных каналов.

Очень редко (ну ооооочень редко) используются DWDM системы уплотнения с 50-гигагерцовой сеткой. Это значит, что между двумя соседними основными каналами обычной 100-гигагерцовой сетки расположен дополнительный подканал. Такие каналы именуются Q и H : Q – подканалы в диапазоне L (например, Q80 – частота 188050ГГц, длина волны 1594.22нм), H – подканалы в диапазоне C (например, H23 – частота 19230ГГц, длина волны 1558.58нм). В таких системах уплотнения в диапазоне C находится 61 основной канал и 61 дополнительный, всего – 122 канала. В диапазоне L – 53 основных и 53 подканала, всего – 106 каналов. Суммарная мощность == 122+106 == 228 однонаправленных каналов, или 114 полноценных дуплексных канала связи! Это много. Очень много. Но очень и очень дорого, и автор не встречал упоминаний о проектах с полной загрузкой DWDM системы с 50-ГГЦ сеткой.

Подведем итоги:

- «облегченный вариант» DWDM системы имеет 200-гигагерцовую сетку и способен обеспечить 15 полноценных дуплексных канала в диапазоне C, оставив при этом место еще и для 15 CWDM каналов (1270нм-1510нм, 1590нм, 1610нм);

Стандартная DWDM система имеет 100-гигагерцовую сетку и способна обеспечить 30 полноценных дуплексных канала в диапазоне C и 26 полноценных дуплексных канала в диапазоне L, при этом также оставив место еще и для 15 CWDM каналов (1270нм-1510нм, 1590нм, 1610нм);

Полная DWDM система имеет 50-гигагерцовую сетку и способна обеспечить 60 полноценных дуплексных канала в диапазоне C и 52 полноценных дуплексных канала в диапазоне L, опять же оставив место еще и для 15 CWDM каналов (1270нм-1510нм, 1590нм, 1610нм);