Для офисных и домашних задач, а также для большинства работ по компьютерной графике лучше всего подходят так называемые планшетные сканеры . Различные модели этого типа шире других представлены в продаже. Поэтому начнем с рассмотрения принципов построения и функционирования сканеров именно этого типа. Уяснение этих принципов позволит лучше понять значение технических характеристик, которые учитываются при выборе сканеров.

Планшетный сканер (Flatbed scanner) представляет собой прямоугольный пластмассовый корпус с крышкой. Под крышкой находится стеклянная поверхность, на которую помещается оригинал, предназначенный для сканирования. Через это стекло можно разглядеть кое-что из внутренностей сканера. В сканере имеется подвижная каретка, на которой установлены лампа подсветки и система зеркал. Каретка перемещается посредством так называемого шагового двигателя . Свет лампы отражается от оригинала и через систему зеркал и фокусирующих линз попадает на так называемую матрицу , состоящую из датчиков , вырабатывающих электрические сигналы, величина которых определяется интенсивностью падающего на них света. Эти датчики основаны на светочувствительных элементах, называемых приборами с зарядовой связью (ПЗС, Couple Charged Device - CCD). Точнее говоря, на поверхности ПЗС образуется электрический заряд, пропорциональный интенсивности падающего света. Далее нужно только преобразовать величину этого заряда в другую электрическую величину - напряжение. Несколько ПЗС располагаются рядом на одной линейке.

Электрический сигнал на выходе ПЗС является аналоговой величиной (т.е. ее изменение аналогично изменению входной величины - интенсивности света). Далее происходит преобразование аналогового сигнала в цифровую форму с последующей обработкой и передачей в компьютер для дальнейшего использования. Эту функцию выполняет специальное устройство, называемое аналого-цифровым преобразователем (АЦП, Analog-to-digital Converter - ADC). Таким образом, на каждом шаге перемещения каретки сканер считывает одну горизонтальную полоску оригинала, разбитую на дискретные элементы (пикселы), количество которых равно количеству ПЗС на линейке. Все отсканированное изображение состоит из нескольких таких полос.

Рис. 119. Схема устройства и работы планшетного сканера на основе ПЗС (CCD): свет лампы отражается от оригинала и через оптическую систему попадает на матрицу светочувствительных элементов, а затем на аналого-цифровой преобразователь (АЦП)

В цветных сканерах сейчас используются, как правило, трехрядная матрица ПЗС и подсветка оригинала калиброванным белым светом. Каждый ряд матрицы предназначен для восприятия одной из базовых цветовых составляющих света (красной, зеленой и синей). Чтобы разделить цвета, используют либо призму, разлагающую луч белого света на цветные составляющие, либо специальное фильтрующее покрытие ПЗС. Однако существуют цветные сканеры и с однорядной матрицей ПЗС, в которых оригинал по очереди подсвечивается тремя лампами базовых цветов. Однорядная технология с тройной подсветкой считается устаревшей.

Выше мы описали принципы построения и работы так называемых однопроходных сканеров, которые сканируют оригинал за один проход каретки. Однако еще встречаются, хотя больше и не выпускаются промышленностью, трехпроходные сканеры. Это сканеры с однорядной матрицей ПЗС. В них при каждом проходе каретки вдоль оригинала используется один из базовых цветных светофильтров: за каждый проход снимается информация по одному из трех цветовых каналов изображения. Эта технология также устарела.

Кроме CCD-сканеров, основанных на матрице ПЗС, имеются CIS-сканеры (Contact Image Sensor), в которых применяется фотоэлементная технология.

Светочувствительные матрицы, выполненные по этой технологии, воспринимают отраженный оригиналом спет непосредственно через стекло сканера без использования оптических систем фокусировки. Это позволило уменьшить размеры и вес планшетных сканеров более чем в два раза (до 3-4 кг). Однако такие сканеры хороши только для исключительно плоских оригиналов, плотно прилегающих к стеклянной поверхности рабочего поля. При этом качество получаемого изображения существенно зависит от наличия посторонних источников света (крышка CIS-сканера во время сканирования должна быть закрыта). В случае объемных оригиналов качество оставляет желать лучшего, в то время как ССО-сканеры дают неплохие результаты и для объемных (до нескольких см в глубину) предметов.

Планшетные сканеры могут быть снабжены дополнительными устройствами, такими как слайд-адаптер, автоподатчик оригиналов и др. Для одних моделей эти устройства предусмотрены, а для других нет.

Слайд-адаптер (Transparency Media Adapter, TMA) - специальная приставка, позволяющая сканировать прозрачные оригиналы. Сканирование прозрачных материалов происходит с помощью проходящего, а не отраженного света. Иначе говоря, прозрачный оригинал должен находиться между источником света и светочувствительными элементами. Слайд-адаптер представляет собой навесной модуль, снабженный лампой, которая движется синхронно с кареткой сканера. Иногда просто равномерно освещают некоторый участок рабочего поля, чтобы не перемещать лампу. Таким образом, главная цель применения слайд-адаптера заключается в изменении положения источника света.

Если же у вас есть цифровая камера (цифровой фотоаппарат), то слайд-адаптер, скорее всего, вам не нужен.

Если сканировать прозрачные оригиналы без использования слайд-адаптера, то нужно понимать, что при облучении оригинала количества отраженного и проходящего света не равны друг другу. Так, оригинал пропустит какую-то часть падающего цвета, которая затем отразится от белого покрытия крышки сканера и снова пройдет через оригинал. Какая-то часть света отразится от оригинала. Соотношение между частями проходящего и отраженного света зависит от степени прозрачности участка оригинала. Таким образом, светочувствительные элементы матрицы сканера получат свет, дважды прошедший через оригинал, а также свет, отраженный от оригинала. Многократность прохода света через оригинал ослабляет его, а взаимодействие отраженного и проходящего пучков света (интерференция) вызывает искажения и побочные видеоэффекты.

Автоподатчик - устройство, подающее оригиналы в сканер, которое очень удобно использовать при потоковом сканировании однотипных изображений (когда не нужно часто перенастраивать сканер), например, текстов или чертежей приблизительно одинакового качества.

Кроме планшетных, есть и другие типы сканеров: ручные, листопротяжные, барабанные, слайдовые, для сканирования штрих-кодов, скоростные для потоковой работы с документами.

Ручной сканер (Handheld Scanner) - портативный сканер, в котором сканирование осуществляется путем его ручного перемещения по оригиналу. По принципу действия такой сканер аналогичен планшетному. Ширина области сканирования - не более 15см. Первые сканеры для широкого применения появились в продаже в 80-х годах XX века. Они были ручными и позволяли сканировать изображения в оттенках серого цвета. Теперь такие сканеры нелегко найти.

Листопротяжный или роликовый сканер (Sheetfed Scanner) - сканер, в котором оригинал протягивается мимо неподвижной линейной CCD- или CIS-матрицы, разновидность такого сканера - факс-аппарат.

Барабанный сканер (Drum Scanner) - сканер, в котором оригинал закрепляется на вращающемся барабане, а для сканирования используются фотоэлектронные умножители. При этом сканируется точечная область изображения, а сканирующая головка движется вдоль барабана очень близко от оригинала.

Слайдовый сканер (Film-scanner) - разновидность планшетного сканера, предназначенная для сканирования прозрачных материалов (слайдов, негативных фотопленок, рентгеновских снимков и т. п.). Обычно размер таких оригиналов фиксирован. Заметим, что для некоторых планшетных сканеров предусмотрена специальная приставка (слайд-адаптер), предназначенная для сканирования прозрачных материалов (см. выше).

Сканер штрих-кодов (Bar-code Scanner) - сканер, предназначенный для сканирования товарных штрих-кодов. По принципу действия он сходен с ручным сканером и подключается к компьютеру, либо к специализированной торговой системе. При наличии соответствующего программного обеспечения распознавать штрих-коды может любой сканер.

Скоростной сканер для работы с документами (Document Scanner) - разновидность листопротяжного сканера, предназначенная для высокопроизводительного многостраничного ввода. Сканеры могут быть оборудованы приемными и выходными лотками объемом свыше 1000 листов и вводить информацию со скоростью свыше 100 листов в минуту. Некоторые модели этого класса обеспечивают двустороннее (дуплексное) сканирование, подсветку оригинала разными цветами для отсечки цветного фона, компенсацию неоднородности фона, имеют модули динамической обработки разнотипных оригиналов.

Итак, для дома и офиса лучше всего подходит планшетный сканер. Если вы хотите заниматься графическим дизайном, то лучше выбрать CCD-сканер (на основе ПЗС-матрицы), поскольку он позволяет сканировать и объемные предметы. Если вы собираетесь сканировать слайды и другие прозрачные материалы, то следует выбрать сканер, для которого предусмотрен слайд-адаптер. Обычно собственно сканер и подходящий к нему слайд-адаптер продаются отдельно. Если не получается приобрести слайд-адаптер одновременно со сканером, то при необходимости вы сможете сделать это позже. Необходимо также определить максимальные размеры сканируемых изображений. В настоящее время типовым является формат А4, соответствующий обычному листу писчей бумаги. Большинство бытовых сканеров ориентированы именно на этот формат. Для сканирования чертежей и другой конструкторской документации обычно требуется формат A3, соответствующий двум листам формата А4, соединенным по длинной стороне. В настоящее время цены однотипных сканеров для форматов А4 и A3 сближаются. Можно предположить, что оригиналы, не превышающие по размерам формат А4, будут лучше обрабатываться сканером, ориентированным на формат A3.

Перечисленные выше параметры далеко не исчерпывают весь список, но на данном этапе нашего рассмотрения мы пока можем использовать только их. При выборе сканера решающими являются три аспекта: аппаратный интерфейс (способ подключения), оптико-электронная система и программный интерфей с (так называемый TWAIN-модуль). Далее мы рассмотрим их более подробно.

Читая в околокомпьютерной периодике заметки, посвященные настоящему и будущему любительской фотографии, невольно ловишь себя на мысли, что общественность планомерно готовят к торжественным похоронам традиционного "пленочного" процесса. Нет слов, успехи индустрии цифровых фотоаппаратов впечатляют, быстрота переноса отснятого материала на компьютер для последующей обработки, удобство и "вечность" хранения кадров, возможность экономии времени и средств на покупке и проявке пленок - более чем весомые аргументы. Камеры с матрицей, имеющей более 2 Мегапикселей, позволяют получить кадры, просмотр которых на экране монитора или печать на ограниченных по размеру форматах вызывает бурные положительные эмоции. Но...
Тем, кто предпочитает оперировать абсолютными величинами, рекомендуем сравнить три важных показателя цифровой и аналоговой фотографии.

Реальное разрешение стандартного (24x36 мм) кадра любительской цветной негативной пленки ISO 100 находится на уровне 100-110 точек/мм (2550-2800 dpi) и таким образом на один кадр приходится в среднем около 8,6-10,5 Мегапикселей (при "правильном" экспонировании и "правильной" же проявке). Сравните с 2-3,5 или более типичными 1-1,5 Мегапикселей доступных на рынке любительских моделей цифровых фотоаппаратов.
Не вдаваясь в тонкости химических реакций фиксации цвета в эмульсии, заметим, что в общем случае изображение на пленке имеет глубину цвета , превышающую 36 бит (> 68,7 млрд. оттенков). Цифровые камеры в абсолютном большинстве обеспечивают максимальную глубину цвета до 24 бит (> 16,7 млн. оттенков). Человеческий глаз практически не способен увидеть разницу между 24 и 36-битным изображением, но любая более-менее профессиональная обработка с последующей печатью требует для корректных преобразований именно 36 бит, кроме того 24-битное изображение имеет ограничения по отображению малоконтрастных деталей.

Важный момент - сравнение стоимости качественной любительской цифровой модели (разумный минимум с соответствующим разрешением - от $550-600) и пленочного фотоаппарата (от $250).
Таким образом, цифровое любительское фото до сих пор фатально отстает от аналогового по четкости, точности цветопередачи и доступности камер, хотя и опережает его по эксплуатационным удобствам, низким накладным расходам и возможности редактирования с помощью компьютера.
"Компьютеризованный" любитель оказывается перед дилеммой - качество отпечатков плюс невысокая стоимость самой камеры или удобство плюс низкие расходы.
К счастью, есть альтернативный вариант, объединяющий некоторые основные достоинства обоих решений. Речь - о пленочных сканерах (они же "фильм-сканеры", слайд-сканеры и т.п.), позволяющих владельцу пленочного фотоаппарата перенести изображение с обычной негативной пленки или слайда на жесткий диск компьютера в цифровом виде, пригодном для дальнейшей обработки или хранения как "вечной" копии.

Пленочные сканеры - хорошие и... разные

Понятно, что далеко не каждый слайд-сканер будет удачной покупкой, модели отличаются не только качеством изготовления (и ценой), но и конкретными характеристиками.

Формат негативов и слайдов , которые можно оцифровать, пользуясь конкретной моделью (35 мм, APS и т.д.) - первая характеристика, на которую следует обратить внимание. Вне зависимости от других достоинств выбранного сканера, он будет бесполезен, если не поддерживает формат имеющихся пленок.

Оптическое разрешение - одна из наиболее важных характеристик пленочного сканера. Как уже говорилось выше, предел разрешения любительской пленки составляет около 2800 dpi (профессиональной - от 3150 и выше), поэтому чем ближе оптическое разрешение сканера к этой величине, тем меньше потери детализации при сканировании. В тоже время более высокие величины не дадут заметного преимущества при обработке любительских материалов.
Если оцифровка производится для последующего вывода на принтере (с оптимальным минимумом разрешения отпечатка в 300 dpi), то для печати на формате A4 (с увеличением более чем в 8 раз) требуется сканировать оригинал с разрешением около 2400 dpi, A6 (или 10x15 см) - 1200 dpi и так далее.
Учтите, что для каждого формата указаны минимальные величины - для вывода участка кадра на полной странице A4 при тех же 300 dpi понадобится более высокое разрешение.
Сканирование для других целей предъявляет свои требования. Так, оформление страниц в Интернет не требует разрешений свыше 75 dpi, поэтому для кадра, который предполагается увеличить в 4 раза, достаточно будет сканирования всего лишь при 300 dpi (с соответствующим сокращением размера файла).

Помимо оптического разрешения в характеристиках сканеров часто указывают и значительно большее интерполяционное - полученное за счет математической обработки сканируемого изображения (иногда еще и за счет меньшего шага передвижения сканирующей головки). Серьезных улучшений при его использовании с полноцветными оригиналами практически нет, так как разрешение воспринимающей свет чувствительной линейки остается тем же, а вот время сканирования часто возрастает многократно.

Диапазон оптической плотности (динамический диапазон) - чрезвычайно важный параметр для полноценного сканирования негативов и слайдов.
Само определение оптической плотности относится к сканируемому оригиналу, оно характеризует отношение исходного потока света к свету прошедшему через пленку (вычисляется как десятичный логарифм такого отношения). За минимальное значение оптической плотности принят 0 (абсолютно прозрачный участок, свет падающий равен свету прошедшему), за максимальное теоретически возможное - 4 (очень черный участок, практически не пропускающий свет).

Диапазон оптической плотности определяется как разница между минимальной (всегда не 0 - обычно от 0,1 и выше) и максимальной оптической плотностью (всегда не 4, обычно меньше 3,9-3,8), с которыми может работать сканер. На практике ширина диапазона оптической плотности для слайд-сканера - это его способность фиксировать малоконтрастные детали в тенях/полутенях и на ярких участках (чем больше ширина диапазона - тем больше градаций плотностей способен разделить сканер и тем более близкие по плотности участки будут различимы). Используя модель с узким динамическим диапазоном можно получить лишь излишне контрастное изображение, с "плоскими" тенями и ярко освещенными участками, лишенными деталей.

Поясним на примерах. Если для сканера указан диапазон 3,0D , то максимальная плотность сканируемых участков, отличающихся от черного, превышает минимальную в 1000 раз (с соответствующим количеством промежуточных градаций). Все, что лежит за верхней границей для сканера равнозначно черному цвету. Даже если усилить освещенность, потерь не избежать - "отступит тень", но зато исчезнут детали участков с наименьшей плотностью.

Сканер с диапазоном 3,6D способен на большее - максимальная плотность превышает минимальную в 3980 раз, а это почти в четыре раза больше градаций, чем у предыдущего примера. Отсканированное изображение становится более объемным, а переходы цветов и полутени - более мягкими и естественными.
В настоящее время минимально допустимым показателем для слайд-сканера считается 3,0D, хорошим - 3,2D-3,4D, отличным - от 3,6D и выше.
Диапазон оптической плотности прочно связан с еще одной характеристикой сканера - глубиной (разрядностью) цвета .
Как уже говорилось выше, 24-битного представления цвета вполне могло бы хватить для просмотра фото, но для его последующей качественной обработки и получения широкого рабочего диапазона оптической плотности требуется 36-бит (12 бит на каждый основной цвет RGB или 12 бит на канал в Adobe Photoshop).

Зависимость предельно достижимой ширины диапазона оптической плотности от разрядности цвета в упрощенном виде выглядит так:
24-битное представление цвета (16,7 млн. цветов) обеспечивает лишь 8 бит на каждый цвет и 256 градаций серого, что приблизительно соответствует 2,4D ширины диапазона оптической плотности (256=10 в степени 2,4).
30-битное (1,07 млрд.цветов) - 10 бит на каждый цвет, 1024 градации серого и около 3,0D.
36-битное (68,7 млрд.цветов) - 12 бит на каждый цвет, 4096 градаций серого и около 3,6D.

Такие максимумы достигаются далеко не всегда, так как ограничения накладываются и другими факторами (для достижения 3,6D вся цепочка от высококачественной считывающей матрицы и блока АЦП до интерфейса должна поддерживать обработку и передачу 36-битной ПОЛЕЗНОЙ информации о цвете, свободной от шумов и помех).

В названии характеристики часто упоминается "внешняя" или "внутренняя". Внутри сканера может использоваться значительно более высокая разрядность (к примеру - 40 бит), которая требуется для компенсации шумов матрицы и др. операций, происходящих с потерями. Для пользователя же важны выходные характеристики сканера - то, что он получит в явном виде. В тоже время повышенная внутренняя разрядность в большинстве случаев расширяет диапазон оптической плотности, обрабатываемой сканером.

Собственный шум матрицы - характеристика, которая практически никогда не указывается в паспортных данных любительских сканеров, но может быть приблизительно оценена на практике (в демонстрационном салоне и т.п.) или выяснена у тех, кто уже имел дело с выбранной моделью. На практике собственный шум матрицы слайд-сканера проявляется при сканировании участков с наибольшей плотностью в виде цветного "мусора", ухудшающего общее качество изображения (естественность теней на слайдах и чистоту ярких участков на негативах). В лучших (и чаще всего дорогих) сканерах используют высококачественные матрицы, аналого-цифровые преобразователи и специальные алгоритмы подавления и фильтрации шумов (к сожалению, до захолаживания (понижения температуры) матрицы, используемого в астрономии, в любительских моделях еще не дошло). Кроме того, могут быть применены и специальные методы снижения шумов.

Диапазон глубины фокусировки - еще один параметр, который в явном виде практически никогда не указывается в выходных данных любительского сканера, но является очень важным при сканировании слайдов. Если расстояние до эмульсии негатива может быть задано подающим механизмом достаточно четко, то в случае слайда ситуация сложнее - толщина рамки редко точно равна стандартной, возможна заметная деформация пленки за счет напряжений, возникших при закреплении в рамке. Результат - сканер с узким диапазоном глубины фокусировки не может обеспечить резкость по всему кадру или даже оказывается вовсе не способен оцифровать слайд с приемлемой четкостью.
Узость диапазона глубины фокусировки может быть скомпенсирована наличием регулировки (полуавтоматической или ручной) или специальными приспособлениями для сканирования слайдов, извлеченных из рамок.

Скорость сканирования - параметр, имеющий небольшое значение при сканировании отдельных кадров, однако весьма важный, если предстоит обработать сразу несколько пленок. Быстрые сканеры способны обработать один кадр за 20-30 с, но как правило лишь в режиме "Норма" или "Стандарт" (при этом на сканирование одной пленки с 36 кадрами уходит от 25 до 40 минут, включая действия по смене отрезков негативов и возможному выбору настроек для отдельных кадров). Использование специальных режимов может увеличить время сканирования одного кадра многократно - до 3-8 минут (1,5-5 часов на 36-кадровую пленку, включая действия по смене отрезков негативов и возможному выбору настроек для кадров). С точки зрения затрат времени становится особенно важной последовательность обработки кадров, возможность обработать несколько кадров одновременно и т.д.

Интерфейс - характеристика, во многом определяющая скорость загрузки полученного изображения на компьютер и удобство подключения слайд-сканера. Наиболее быстрым интерфейсом, используемым в слайд-сканерах, был и остается SCSI (требует наличия в комплекте или в ПК контроллера SCSI и специальный кабель), следующим по быстродействию идет более новый USB (требует наличия контроллера и портов USB, помимо сравнительно высокой скорости передачи обеспечивает еще и "горячее" подключение - без перезагрузки ПК), замыкает список интерфейс параллельного порта. В последнем случае может быть предусмотрено как подключение к стандартному порту LPT, так и к отдельной плате.

Возможности программного обеспечения могут как значительно улучшить общие характеристики сканера, так и свести его достоинства к рекламным фразам. К примеру, "грамотный" автоматический конвертер маскированных негативов позволяет на хорошем сканере получить позитивное изображение с достоверной передачей цвета даже без "финишных" регулировок. Возможен (хотя и редко встречается) обратный вариант - отвратительная функция конвертации сделает модель практически бесполезной для сканирования негативов, требуя огромных затрат времени на настройку цветов полученного изображения в редакторе. Удобный интерфейс утилит существенно сокращает время на сканирование (непродуманный - многократно увеличивает). В комплекте программного обеспечения со сканерами обычно поставляется т.н. TWAIN -драйвер - специальный драйвер, позволяющий обращаться к сканеру и управлять им из различных программ обработки графики, совместимых с TWAIN (например, Adobe Photoshop). При этом не следует путать TWAIN-драйвер с драйвером для операционной системы - они имеют совершенно различное назначение.

Комплектность - оснащение сканера необходимыми приспособлениями и устройствами, кабелями, программным обеспечением и т.д. Важная характеристика с точки зрения готовности к работе прямо "из коробки" (все есть для подключения, калибровки, работы в установленной на ПК операционной системе, загрузки слайдов и негативов). Комплектность определяет и дополнительные возможности модели при сканировании в нестандартных ситуациях (к примеру, наличие специальной рамки позволяет сканировать слайды, извлеченные из толстых рамок и т.д.).

Понятно, что помимо всех перечисленных характеристик и сторон слайд-сканеров покупателя как правило волнует стоимость модели. Ценовой диапазон представленных на рынке вариантов, которые можно отнести к любительским, крайне широк - от $125 до $2800 (в случае верхней границы правильнее было бы говорить о полупрофессиональной категории), при этом более высокая цена не обязательно соответствует более привлекательным характеристикам.

На первый взгляд, идея создания планшетного сканера с оптическим разрешением более 600 ppi, не предназначенного для работы с прозрачными оригиналами, кажется довольно сомнительной - ведь для подавляющего большинства оригиналов, сканируемых в отраженном свете, более чем достаточно 300-400 ppi. Однако не стоит забывать, что солидную долю сканируемых как в домашних, так и офисных условиях оригиналов составляют изображения, отпечатанные типографским способом. Из-за интерференционных явлений, возникающих при оцифровке растрированных изображений, на полученном изображении появляется заметный муар, бороться с которым без ущерба для качества или размера изображения довольно сложно. Для борьбы с подобными явлениями используются специальные алгоритмы, заложенные в программы управления сканированием. Как правило, работа функции подавления муара основана на сканировании оригинала с избыточным (то есть большим, чем задано пользователем) разрешением и дальнейшей программной обработкой полученного изображения. Вот тут-то преимущество сканеров с большим разрешением будет очевидно в прямом смысле этого слова.

Основные технические параметры сканеров

Разрешающая способность

Разрешающая способность, или разрешение, - один из наиболее важных параметров, характеризующих возможности сканера. Самая распространенная единица измерения разрешающей способности сканеров - количество пикселов на один дюйм (pixels per inch , ppi ). Не следует отождествлять ppi c более известной единицей dpi (dots per inch - количество точек на дюйм), которая используется для измерения разрешающей способности растровых печатающих устройств и имеет несколько иной смысл.

Различают оптическое и интерполированное разрешение. Величину оптического разрешения можно вычислить, разделив количество светочувствительных элементов в сканирующей линейке на ширину планшета. Несложно сосчитать, что количество светочувствительных элементов у рассматриваемых нами сканеров, имеющих оптическое разрешение 1200 ppi и формат планшета Legal (то есть ширину 8,5 дюйма, или 216 мм), должно составлять не менее 11 тыс.

Говоря о сканере как об абстрактном цифровом устройстве, нужно понимать, что оптическое разрешение - это частота дискретизации, только в данном случае отсчет идет не по времени, а по расстоянию.

В табл. 1 приведены требуемые значения разрешающей способности для решения наиболее распространенных задач. Как можно заметить, при сканировании в отраженном свете в большинстве случаев вполне достаточно разрешения в 300 ppi, а более высокие значения требуются либо для масштабирования оригинала на больший размер, либо для работы с прозрачными оригиналами, в частности с 35-миллиметровыми диапозитивами и негативами.

Таблица 1. Величины разрешающей способности для решения наиболее распространенных задач

Применение

Требуемое разрешение, ppi

Сканирование в отраженном свете

Иллюстрации для Web-страниц

Распознавание текста

Штриховая графика для печати на монохромном принтере

Черно-белое фото для печати на монохромном принтере

Цветное фото для печати на струйном принтере

Текст и графика для передачи по факсу

Цветное фото для офсетной печати

Сканирование в проходящем свете

35-миллиметровая пленка, фото для Web-страниц

35-миллиметровая пленка, фото для распечатки на струйном принтере

60-миллиметровая пленка, фото для Web-страниц

60-миллиметровая пленка, фото для распечатки на струйном принтере

Многие производители, стремясь привлечь покупателей, указывают в документации и на коробках своих изделий значение оптического разрешения 1200*2400 ppi. Однако вдвое большая цифра для вертикальной оси означает не что иное, как сканирование с половинным вертикальным шагом и дальнейшей программной интерполяцией, так что в данном случае оптическое разрешение этих моделей фактически остается равным первой цифре.

Интерполированное разрешение - это повышение количества пикселов в отсканированном изображении за счет программной обработки. Величина интерполированного разрешения может во много раз превышать величину оптического разрешения, однако следует помнить, что количество информации, полученной с оригинала, будет таким же, как и при сканировании с оптическим разрешением. Другими словами, повысить детальность изображения при сканировании с разрешением, превышающим оптическое, не удастся.

Разрядность

Разрядность, или глубина цвета, определяет максимальное число значений, которые может принимать цвет пиксела. Иначе говоря, чем выше разрядность при сканировании, тем большее количество оттенков может содержать полученное изображение. Например, при сканировании черно-белого изображения с разрядностью 8 бит мы можем получить 256 градаций серого (2 8 = 256), а используя 10 бит - уже 1024 градации (2 10 = 1024). Для цветных изображений возможны два варианта указываемой разрядности - количество бит на каждый из базовых цветов либо общее количество бит. В настоящее время стандартом для хранения и передачи полноцветных изображений (например, фотографий) является 24-битный цвет. Поскольку при сканировании цветных оригиналов изображение формируется по аддитивному принципу из трех базовых цветов, то на каждый из них приходится по 8 бит, а количество возможных оттенков составляет немногим более16,7 млн. (2 24 = 16 777 216). Многие сканеры используют большую разрядность - 12, 14 или 16 бит на цвет (полная разрядность составляет соответственно 36, 42 или 48 бит), однако для записи и дальнейшей обработки изображений эта функция должна поддерживаться применяемым программным обеспечением; в противном случае полученное изображение будет записано в файл с 24-битной разрядностью.

Следует отметить, что более высокая разрядность далеко не всегда означает более высокое качество изображения. Указывая 36- или 48-битную глубину цвета в документации или рекламных материалах, производители зачастую умалчивают о том, что часть битов используется для хранения служебной информации.

Динамический диапазон (максимальная оптическая плотность)

Как известно, более темные участки изображения поглощают большее количество падающего на них света, чем светлые. Величина оптической плотности показывает, насколько темным является данный участок изображения и, следовательно, какое количество света поглощается, а какое отражается (или проходит насквозь в случае прозрачного оригинала). Обычно плотность измеряется для некоего стандартного источника света, имеющего заранее определенный спектр. Значение плотности вычисляется по формуле:

где D - величина плотности, R - коэффициент отражения (то есть доля отражаемого или проходящего света).

Например, для участка оригинала, отражающего (пропускающего) 15% падающего на него света, величина плотности составит log(1/0,15) = 0,8239.

Чем выше максимальная воспринимаемая плотность, тем больше динамический диапазон данного устройства. Теоретически динамический диапазон ограничен используемой разрядностью. Так, восьмибитное монохромное изображение может иметь до 256 градаций, то есть минимальный воспроизводимый оттенок составит 1/256 (0,39%), следовательно динамический диапазон будет равен log(256) = 2,4. Для 10-битного изображения он будет уже немного больше 3, а для 12-битного - 3,61.

Фактически это означает, что сканер с большим динамическим диапазоном позволяет лучше воспроизводить темные участки изображений или просто темные изображения (например, передержанные фотоснимки). Следует оговориться, что в реальных условиях динамический диапазон оказывается меньше вышеуказанных значений из-за влияния шумов и перекрестных помех.

В большинстве случаев плотность непрозрачных оригиналов, сканируемых на отражение, не превышает значения 2,0 (что соответствует участку с однопроцентным отражением), а типичное значение для высококачественных печатных оригиналов составляет 1,6. Слайды и негативы могут иметь участки с плотностью выше 2,0.

Источник света

Источник света, используемый в конструкции того или иного сканера, в немалой степени влияет на качество получаемого изображения. В настоящее время используются четыре типа источников света:

  1. Ксеноновые газоразрядные лампы . Их отличают чрезвычайно малое время включения, высокая стабильность излучения, небольшие размеры и долгий срок службы. Но они не очень эффективны с точки зрения соотношения количества потребляемой энергии и интенсивности светового потока, имеют неидеальный спектр (что может вызвать нарушение точности цветопередачи) и требуют высокого напряжения (порядка 2 кВ).
  2. Люминесцентные лампы с горячим катодом . Эти лампы обладают наибольшей эффективностью, очень ровным спектром (которым к тому же можно управлять в определенных пределах) и малым временем разогрева (порядка 3-5 с). К отрицательным сторонам можно отнести не очень стабильные характеристики, довольно значительные габариты, относительно небольшой срок службы (порядка 1000 часов) и необходимость держать лампу постоянно включенной в процессе работы сканера.
  3. Люминесцентные лампы с холодным катодом . Такие лампы имеют очень большой срок службы (от 5 до 10 тыс. часов), низкую рабочую температуру, ровный спектр (следует отметить, что конструкция некоторых моделей этих ламп оптимизирована для повышения интенсивности светового потока, что негативно отражается на спектральных характеристиках). За перечисленные достоинства приходится расплачиваться довольно большим временем прогрева (от 30 с до нескольких минут) и более высоким, чем у ламп с горячим катодом, энергопотреблением.
  4. Светодиоды (LED). Они применяются, как правило, в CIS-сканерах. Цветодиоды обладают очень малыми габаритами, небольшим энергопотреблением и не требуют времени для прогрева. Во многих случаях используются трехцветные светодиоды, с большой частотой меняющие цвет излучаемого света. Однако светодиоды имеют довольно низкую (по сравнению с лампами) интенсивность светового потока, что снижает скорость сканирования и увеличивает уровень шума на изображении. Весьма неравномерный и ограниченный спектр излучения неизбежно влечет за собой ухудшение цветопередачи.

Скорость сканирования и время прогрева

В процессе тестирования было измерено время, необходимое для «холодного» старта и восстановления из режима энергосбережения.

Для оценки производительности тестируемых сканеров были проведены замеры времени, требующегося для выполнения нескольких наиболее типичных задач. Отсчет времени начинался с момента нажатия кнопки Scan (или аналогичной) в приложении, из которого производилось сканирование, и заканчивался после того, как данное приложение вновь было готово к работе (то есть можно было производить какие-либо действия, например изменение настроек или области сканирования).

2.6 Технические данные

1) Разрешающая способность

Разрешающая способность говорит нам сколько пикселей или точек на дюйм может быть зафиксировано и обозначено в ppi (пиксели на дюйм) или dpi (точки на дюйм). Чем больше пикселей или точек зафиксированы, тем выше детализация в со сканированном изображении. Разрешающая способность 300 x 300 dpi соответствует 90 000 точкам в сумме на участке в один квадратный дюйм.

Оптическая разрешающая способность

Оптическая разрешающая способность зависит от количества фотоячеек на светочувствительном элементе (горизонтальная оптическая разрешающая способность) и от размера шага мотора каретки, который перемещает светочувствительный элемент поперек документа (вертикальная оптическая разрешающая способность).

2.7 Интерполированная разрешающая способность

Принимая во внимание, что оптическая разрешающая способность может быть достигнута техническими средствами, интерполированная разрешающая способность достигнута программным обеспечением сканера. Посредством алгоритмов программное обеспечение создает дополнительные(виртуальные) пиксели между реальными пикселями, зафиксированными светочувствительным элементом, таким образом достигается максимально возможная разрешающая способность. Эти дополнительные пиксели - это усреднённое значение цвета, и яркости полученное из смежных пикселей. Поскольку эти дополнительные пиксели реально не отражают сканируемый документ, они менее точны и не расширяют качество изображения. Поэтому по критерию качества картинки для сканера оптическое значение разрешающей способности более важно.

Иногда, однако, интерполяция важна когда горизонтальная оптическая разрешающая способность, которая зависит от количества фотоячеек на светочувствительном элементе, ограничена. Например, если бы сканер работал с оптической разрешающей способностью 300 x 600 точек на дюйм, со сканированное изображение было бы деформировано, поскольку горизонтальная оптическая разрешающая способность ниже чем вертикальная оптическая разрешающая способность. В этом случае оптическая разрешающая способность должна быть интерполирована, чтобы достигнуть 600 x 600 точек на дюйм.

2) Глубина цвета

Глубина цвета, также называют битовой глубиной, указывает сколько цветов может быть представлено в пикселе. Это зависит от чувствительности AD преобразователя. AD преобразователь, который использует 8 битовых сигналов, может представить 2(8)=256 уровней яркости для каждого цвета (красный, зелёный, синий) и таким образом получаем 2(24) = 16.7 миллионов цветов в сумме. В этом случае мы имеем глубину цвета 24 бита.

Внутренняя и внешняя глубина цвета

Некоторые сканеры различаются по внутренней и внешней глубине цвета. Внутренняя глубина цвета указывает, сколько цветов может быть представлено AD преобразователем. Внешняя глубина цвета указывает, сколько цветов сканер фактически способен передать компьютеру. Внешняя глубина цвета может быть ниже чем внутренняя глубина. В этом случае сканер выбирает наиболее соответствующие цвета и передаёт их компьютеру.

Глубина цвета и качество

Для сканирования черно-белых документов глубины цвета в 1 бит (0 или 1) - достаточно. Для сканирования цветных документов необходимо гораздо большее количество битов. Если сканировать документ с глубиной цвета 24 бита(16,7 миллионов цветов), то получится почти фотографическое качество, которое упоминается как true color (истинный цвет). Хотя на данный момент большинство сканеров, представленных на рынке, работают с внутренней и внешней глубиной цвета в 48 битов.

3) Оптическая плотность

Оптическая плотность - это мера непрозрачности зоны изображения. Она указывает степень светового отражения этой зоны. Более темная зона - менее слабое отражение. Диапазон от самой яркой зоны(белый цвет) к самой темной зоне(чёрный цвет) в изображении - это диапазон плотности или динамический диапазон.

Оптическая плотность измерена с оптическими денситометрами, и располагается от 0 до 4, где 0 - чистый белый цвет (Dmin), и 4 является очень черным (Dmax).

При узком динамическом диапазоне сканер может не фиксировать часть деталей изображения и терять информацию. Самое яркое значение, которое может фиксироваться, называется Dmin, а самое темное значение Dmax. Чтобы получить лучшие результаты, динамический диапазон сканера должен включать динамический диапазон документа, который будет сканирован.

В этом случае динамический диапазон сканера включает динамический диапазон документа так, что многочисленные детали в белых и черных зонах могут быть зафиксированы устройством.

Динамический диапазон сканируемых оригиналов варьируется от документа к документу.

Как можно видеть из таблицы выше, сканер должен иметь особенно широкий динамический диапазон для работы с негативами или слайдами - это основные свойства присущие фотосканерам. Возможный динамический диапазон сканера зависит от нескольких факторов, таких как глубина цвета AD преобразователя, беспримесность(чистота) света лампы и светофильтров, и помех системы(шум).

  1. CCD или CIS: технологии сканеров

Существует две технологии светочувствительных элементов:

3.1 CCD – светочувствительный элемент на основе ПЗС (приборов с зарядной связью). Обычно, представляет собой полоску светочувствительных элементов.

В процессе движения каретки, свет от лампы отражается от сканируемого носителя и проходя через систему линз и зеркал, попадает на светочувствительные элементы, которые формируют фрагмент изображения.

Двигаясь, каретка проходит под всем носителем, и сканер составляет общую картину из последовательно “сфотографированных” фрагментов – изображение носителя…

Технология сканеров на основе ПЗС довольно старая и, надо сказать, лидирующая в данный момент. Она обладает следующими положительными моментами:

1) CCD-сканер обеспечивает большую глубину резкости. Это означает, что даже если вы сканируете, скажем, толстую книгу, то место переплета, которое обычно сложно полностью прижать к стеклу, тем не менее будет отсканировано с приемлемым качеством.

2) CCD-сканер обеспечивает большую чувствительность к оттенкам цветов. Хотя, этот аргумент “ЗА” ПЗС многие называют спорным, но часто ПЗС-сканеры действительно распознают больше цветов, чем сканеры другой конкурирующей технологии, которую мы рассмотрим ниже.

3) ПЗС-сканеры обладают большим сроком службы. Как правило – 10 000 часов.

Основные недостатки:

1. Большая чувствительность к механическим воздействиям (ударам и т.п.).

2. Сложность оптической системы может нуждаться в калибровке и/или очистке от частиц пыли, через определенное время эксплуатации.

3.2 CIS (Contact Image Sensor ) – светочувствительный элемент представляет собой линейку одинаковых фотодатчиков, равную по ширине рабочему полю сканирования, непосредственно воспринимающих световой поток от оригинала. Оптическая система – зеркала, преломляющая призма, объектив – полностью отсутствует.

Это достаточно молодая технология, которую активно развивает и продвигает компания Canon.

Основные плюсы:

1) Сканер получается довольно тонким. Из-за отсутствия оптической системы. Конечное изделие имеет стильный дизайн.

2) Сканер получается дешевым, т.к. производство CIS-элементов обходится дешево.

3) Т.к. в CIS-сканере ртутная лампа заменена светодиодами, получаем несколько плюсов: отсутствие отдельного блока питания (сканер получает питание по USB кабелю), постоянную готовность к работе (не требуется время на прогрев лампы – можно сразу приступать к сканированию после того, как пользователь даст команду); и достаточно высокую скорость сканирования (которая опять же выходит из того, что сканеру не требуется греть лампу).

4) Отсутствие потребности в дополнительном питании из розетки делает сканер мобильным: он обладает малым весом и компактными размерами, его можно носить с собой вместе с ноутбуком; можно сканировать в любое время и в любом месте, даже если ноутбук работает от батареи.

5) CIS-сканеры работают, как правило, гораздо тише CCD-сканеров.

6) Считается, что отсутствие оптики делает CIS-сканер менее чувствительным к внешним механическим воздействиям, т.е. его труднее испортить неаккуратным обращением. Но следует учесть также и то, что стекло планшета у такого сканера часто тоньше, чем у его конкурента с оптикой.

Основные недостатки: CIS-элементов:

1) Из-за отсутствия оптической системы, светочувствительный элемент имеет малую глубину резкости. До 10-ти раз меньше, чем CCD-сканер. Это означает, что сканирование толстых книг затруднено, т.к. носитель должен быть максимально плотно прижат к стеклу.

2) CIS-сканер теряет примерно 30% яркости после 500-700 часов работы. Конечно, обычно для для домашнего использования это часто не критично, но для тех, кто сканирует часто и много – это может стать решающим фактором в выборе.

3) CIS-сканер, как правило, обладает меньшим цветовым охватом, чем CCD, однако, в последнее время разрыв между этими технологии по цветовому охвату либо незначителен, либо отсутствует вовсе.

    3D сканирование

В настоящее время для решения строительных и архитектурных задач широко используется тахеометрическая съемка, которая позволяет получить координаты объектов, а затем представить их в графическом виде. Тахеометрическая съемка позволяет проводить измерения с точностью до нескольких миллиметров, при этом скорость измерения тахеометра не более 2 измерений в секунду. Такой метод эффективен при съемке разреженной, незагруженной объектами площади. Очевидными недостатками такой технологии являются малая скорость проведения измерений, и неэффективность съемки загруженных площадей, таких как фасады зданий, заводов с площадь превышающей 2 га, а так же малая плотность точек на 1м2.

Одним из возможных способов решения данных проблем является применение новых современных технологий исследования, а именно лазерного сканирования.

Лазерное сканирование – технология, позволяющая создать цифровую трехмерную модель объекта, представив его набором точек с пространственными координатами. Технология основана на использовании новых геодезических приборов – лазерных сканеров, измеряющих координаты точек поверхности объекта с высокой скоростью порядка нескольких десятков тысяч точек в секунду. Полученный набор точек называется «облаком точек» и впоследствии может быть представлен в виде трехмерной модели объекта, плоского чертежа, набора сечений, поверхности и т.д.

Более полную цифровую картину невозможно представить никаким другим из известных способов. Процесс съемки полностью автоматизирован, а участие оператора сводится лишь к подготовке сканера к работе.

Аппаратура и программное обеспечение

Не удивляйтесь, если вы не обнаружили этих слов в характеристиках вашего сканера - производители не всегда указывают этот показатель. Но это вовсе не означает, что данная характерисктика не играет существенной роли в качестве получаемого изображения. Наоборот, многие специалисты сходятся во мнении, что это основной показатель качества сканера.

Что такое динамический диапазон?

Более точно этот параметр называется диапазоном оптических плотностей.

Оптическая плотность - это показатель, позволяющий численно измерить, насколько темным является оригинал. Для прозрачного оригинала оптическая плотность - это десятичный логарифм отношения общего потока света к потоку света, прошедшего через оригинал; для непрозрачных - отношения всего потока к отраженному свету.

Таким образом, чем темнее оригинал, тем больше его оптическая плотность. Например, значение оптической плотности 0,01 соответствует практически белому свету, а значения 4,0 и выше - почти черному, практически неразличимому глазом.

На любом слайде есть как светлые, так и темные области - целый набор различных оптических плотностей. Диапазон между самой маленькой и самой большой оптической плотностью на данном оригинале называется его динамическим диапазоном .

Динамический диапазон сканера

Динамический диапазон есть не только у оригинала, но и у сканера. Динамический диапазон сканера – это разность оптических плотностей, которую сканер может распознать.

Белый цвет все сканеры распознают достаточно хорошо. Другими словами, с минимальной оптической плотностью у них проблем нет. У большинства сканеров она равна 0,01 или даже меньше. Проблемы возникают при сканировании темных областей, где света очень мало. Здесь все зависит от чувствительности считывающего фотоэлемента: чем чувствительнее CCD линейка, тем лучше сканер распознает темные области.

Что значит «распознает»?

Под этим словом подразумевается сразу два действия. Во-первых, сканер должен отличить темный оттенок от максимально черного. Иначе многие темные области на сканированном изображении будут выглядеть просто черным пятном без каких-либо деталей. Во вторых, сканер должен сканировать темную область без шумов - этакого цветного мусора в виде разноцветных точек. Ведь чем темнее оригинал, тем слабее сигнал на фотоэлементе, и тем больший вклад в изображение будет вносить шум самого фотоэлемента и других электронных компонентов сканера.

Способность сканера отличать темные области от черных и степень зашумленности темных областей обычно связаны между собой. Они определяются качеством фотоэлемента и глубиной цвета сканера: чем более темные области распознает сканер, тем меньше шума вносит фотоэлемент.

Поэтому эти два параметра обычно объединяют одной характеристикой - динамическим диапазоном, который показывает, насколько качественный фотоэлемент установлен в сканере, и следовательно, насколько темные области он распознает и какой уровень шумов в тенях дает при сканировании. Разумеется, чем больше значение динамического диапазона, тем лучше.

Кроме того, динамический диапазон зависит от глубины цвета сканера, то есть от количества градаций серого (яркости), который он может передать. Это естественно: чем меньше градаций яркости передает сканер, тем меньше разница между самым светлым и самым темным оттенками, которые он распознает.

Связаны эти параметры очень просто. Допустим, глубина цвета сканера составляет 36 бит, или 12 бит на цвет. Это значит, что он распознает 4096 градаций серого. Десятичный логарифм от 4096 дает 3,6 - это и есть максимальный динамический диапазон данного сканера. На самом деле он меньше, поскольку чувствительность фотоэлемента не идеальна. Насколько - зависит от качества фотоэлемента. Однако можно точно сказать, что динамический диапазон данного сканера не может превышать 3,6.

По динамическому диапазону можно точно классифицировать сканеры (табл. 1).

Динамический диапазон оригинала

Очевидно, что значение динамического диапазона сканера должно превосходить значение динамического диапазона оригинала. Иначе при сканировании часть информации с оригинала будет утрачена: если изображение и не будет сплошь черным, то темные оттенки пропадут. Например, вместо тени на лице будет просто черное пятно. Либо же сканер поднимет яркость изображения и хорошо распознает темные области, зато вместо светлых областей получатся пятна, на этот раз - белые.

Данные для наиболее распространенных непрозрачных оригиналов приведены в таблице 2.

Таким образом, диапазон сканера, предназначенного для сканирования исключительно непрозрачных оригиналов, должен быть не меньше 2,3–2,5. С другой стороны, он не должен слишком уж превышать эти цифры, так как с увеличением динамического диапазона цена сканера возрастает в геометрической прогрессии.

С прозрачными оригиналами дело обстоит несколько сложнее. Во-первых, фотоматериалы бывают профессиональными и любительскими. У последних диапазон плотностей несколько меньше.

Во-вторых, в отличие от непрозрачных оригиналов, которые, как правило, печатаются на белой бумаге (то есть отсчет динамического диапазона ведется от белого цвета с низкой плотностью), в негативах самый светлый оттенок все равно имеет значительную плотность.

Это значит, что при сканировании негативов и слайдов надо учитывать не только динамический диапазон, но и максимальную оптическую плотность. Например, слайд с динамическим диапазоном 3,0 может иметь плотности от 0,7 до 3,7. А ведь динамический диапазон сканера отсчитывается практически от белого цвета - от низких плотностей. Таким образом, если диапазон сканера составляет 3,5, то максимальная плотность, которую он может распознать, - это 3,55 (максимум - 3,6). Такой сканер не сможет корректно отсканировать описанный выше слайд, хотя его динамический диапазон выше, чем у оригинала.

Поэтому для прозрачных оригиналов лучше учитывать не динамический диапазон, а максимальную оптическую плотность (таблица 3). Другими словами, максимальная оптическая плотность слайда должна быть меньше, чем максимальная плотность, которую распознает сканер.

Чем сканировать?

Что бы ни заявлял производитель, динамический диапазон планшетного сканера из класса «офисных и домашних», так называемого SOHO, стоимостью до $450, не превышает 2,6–2,7. Одна только CCD линейка, способная дать динамический диапазон 3,0, стоит дороже.

Такой сканер хорошо обрабатывает непрозрачные оригиналы, но темные области на слайдах будут выглядеть сплошным черным пятном с огромным количеством шумов. Если вы попытаетесь на таком сканере отсканировать негатив, то после инвертирования все светлые области (те, что на негативе были темными), например, небо с облаками или светлая рубашка - будут выглядеть сплошным белым пятном без каких либо деталей, кроме тех же шумов.

Поэтому, даже если к сканеру за $200 докупить слайд-модуль, качественно сканировать слайды и, тем более, негативы на нем не удастся.

Минимальный динамический диапазон, при котором можно надеяться на более или менее приличный результат, - 3,0, а лучше 3,4. Минимальная стоимость планшетного сканера с таким диапазоном - $600. Слайд-сканер с 3,0D обойдется не намного дешевле, а для профессионального использования необходимы сканеры с диапазоном от 3,4D и выше.

Что сканировать?

Мы не будем пытаться классифицировать оригиналы, а лишь разберемся, каким оригиналам следует отдавать предпочтение, а каких - избегать, и почему.

Начнем с самого простого - со сканирования текста. Высокого разрешения для этой работы не требуется, но тонкости все равно есть.

Во-первых, при выборе способа сканирования любой сканер предлагает два варианта:

  • режим black&white (halftone) - черно белый без оттенков серого;
  • режим grayscale - с оттенками серого.

В первом случае о рисунках можно забыть. Они превратятся в черные пятна, останется только текст. Причем, если текст не очень четкий, местами смазанный или просто бледный, то полученное изображение будет выглядеть плачевно.

С другой стороны, режим black&white - самый быстрый и экономный с точки зрения размера файла. Применять его нужно только для очень четкого текста.

В остальных случаях лучше предпочесть сканирование в оттенках серого. Программа распознавания текста прекрасно справится с таким файлом, да и рисунки, логотипы и т. п. отсканируются нормально.

Если оригинал цветной, необходимо учесть возможности сканера.
В принципе, самый лучший оригинал - слайд, чуть хуже - негатив, еще хуже - фотография, а полиграфических цветных отпечатков вроде вырезок из журналов вообще лучше избегать.

Почему?

Во-первых, именно в таком порядке уменьшается динамический диапазон оригиналов. Но это не самая главная причина, по которой слайд или негатив предпочтительнее фотографии.

Дело в том, что каждый оригинал характеризуется цветовым охватом - набором передаваемых оттенков. Этот параметр не следует путать с глубиной цвета. Глубина цвета показывает количество оттенков, а цветовой охват показывает, какие это оттенки.

Проиллюстрируем это на примере. Самый большой цветовой охват у человеческого глаза. Его можно изобразить в виде некой фигуры, на которой отражены все воспринимаемые оттенки (см. рисунок).

Большой треугольник очерчивает все оттенки, которые передает слайд и вообще фотопленка, треугольник поменьше соответствует цветам, передаваемым монитором (контур для сканера представляет собой нечто среднее между слайдом и монитором). Наконец, внутренняя фигура отвечает набору красок CMYK, то есть цветовому охвату типографской машины (и цветного лазерного принтера, у которого цветовой охват немногим больше).

Таким образом, зелено-голубую гамму хорошо передает фотопленка и сканер, но не принтер (известный факт: на стандартном 4 цветном принтере нельзя изобразить голубое небо).

Отсюда мораль - если есть выбор, то надо сканировать оригинал, который передает большее количество оттенков, то есть слайд, а не отпечатанную с него фотографию. Однако сканировать слайды могут далеко не все сканеры - из за слабого динамического диапазона офисных моделей. Поэтому у владельца сканера за $100–200 часто попросту нет выбора.

О полиграфических отпечатках надо сказать отдельно. Принтеры и полиграфические машины печатают специальными точками - растром, частота которого не слишком отличается от разрешения сканера 1. Хотите узнать, что получится, если наложить друг на друга две периодические структуры - сканера и отпечатка? Посмотрите на свет через два слоя капрона или любой другой полупрозрачной синтетической ткани. Вы увидите муар. Такой же муар получится в результате сканирования полиграфического отпечатка.

Бороться с этим эффектом позволяет специальная функция Descreen в драйвере сканера. Она удаляет муар, слегка размывая изображение. Но при этом существенно страдает качество. Поэтому сканировать вырезки из журнала можно только с последующим уменьшением изображения, тогда эффект размытости будет не так заметен.

Краткое резюме - если позволяет сканер, сканируйте слайды, а не фотографии. Если есть возможность - избегайте сканирования полиграфических отпечатков, а если выхода нет, то сканируйте с последующим уменьшением картинки, минимум, в 1,5 раза.