С появлением цифровых фотоаппаратов эта задача упростилась до неприличия. Проявлять, печатать и даже сканировать уже давно не нужно, даже самые бюджетные модели обязательно пишут в EXIF дату съемки, а небюджетные ещё и координаты места - остаётся только скопировать файлы с карты памяти да использовать любую понравившуюся программу-вьюер. А если у вас в семье было несколько поколений фотографов, пусть даже и любителей?

О том, что делать со старыми негативами, слайдами и отпечатками, и пойдёт речь в этой статье. Замечу, что Америк я не открывал и любой более-менее квалифицированный пользователь легко сделает всё это сам.

1. Оборудование

Покупка профессионального фильм-сканера в планы автора не входила: кроме негативов и слайдов, в архиве было около 4000 фотоотпечатков, для которых нужен планшетный сканер, в идеале - с автоподачей. Конечно, лучше сканировать оригинальный негатив, чем отпечатенный с него позитив, но разобраться, для каких снимков сохранились негативы, было невозможно. Покупать же два сканера ради разовой, по сути, работы не позволили жаба и здравый смысл.

В итоге за 5990 руб. был куплен планшетный сканер среднего класса Epson Perfection V350 Photo , снабженный AFL (Auto Film Loader, автоподатчик для пленки). Оптическое разрешение 4800 DPI позволяет сканировать негативы и слайды. Конечно, динамический диапазон за эти деньги не такой, как у профессиональных фильм-сканеров, и скорость оставляет желать лучшего, но…

Кроме сканера, понадобятся фотобачок для промывки старых 35-мм плёнок и пара прищепок для последующей просушки. Ещё нужно место на диске: отсканированные в адекватном разрешении ~9000 фотографий (JPG максимального качества) у автора заняли 45 Гб. Если кто-то решит хранить данные в loseless-формате (TIFF/PSD/etc.), то ещё больше.

2. Программное обеспечение

4. Коррекция фона. По смыслу это аналог коррекции уровней (Levels) в Adobe Photoshop. Работает хорошо, некоторые кадры позволяет «вытянуть» сразу на этапе сканирования. Уровень «высокий» почти не используется: если кадр изначально затемнен, попытка применения фильтра уменьшит контрастность до неприемлемых величин.

5. Удаление дефектов. Самый неоднозначный фильтр. На снимках с большим количеством однородно заполненных участков (небо, спокойная вода, мебель) действительно позволяет убрать большое количество дефектов. На фотографиях с большим количеством лиц небольшого, относительно площади кадра, размера(групповые портреты, демонстрации) может принять части лица за дефект со всеми вытекающими. Особенно ему не нравятся глаза:) Фильтр ресурсоемкий, увеличивает время сканирования.

Синхронизация веб-альбомов Picasa и каталога на диске

После того, как в каталоге появятся первые файлы со сканера, нужно настроить синхронизацию с веб-альбомами Picasa. В свойствах альбома выбираем «Включить синхронизацию»:

После включения режима синхронизации не забудьте указать размер фотографий. Для резервного копирования нужно установить «Изображения в исходном размере ». На скорости просмотра это не скажется, а вот на скорости синхронизации скажется сильно (зависит от вашей скорости соединения с интернетом). Еще можно включить режим «частный », если вы не хотите (я, например, не хочу:), чтобы ваши фотографии были общедоступны. В режиме «частный» можно выдать права доступа на просмотр и редактирование выбранным вами пользователям Google (нужен аккаунт Google).

Вот и всё. Теперь, если у вас есть желание и время, можно оцифровать всё, что было отснято в доцифровую эпоху. Сканер сканирует, Picasa автоматически загружает фотографии на веб, а вы не забываете время от времени делать резервные копии на другие носители.

Не забывайте о резервном копировании!

Дополнительная информация:

- : замечательный ресурс со статьями о сканировании плёнок.
- там же: «Почему не следует сканировать плёнки на планшетнике » (полностью согласен, но…)

Даже самое высокое разрешение не сможет дать качественного изображения, если полученные при сканировании цифровые значения неадекватно отражают цвета оригинального изображения. При правильной цветопередаче важную роль играют две характеристики сканера.

Во-первых, это – глубина цвета , т.е. число разрядов, используемых для кодирования цвета каждого оцифрованного пиксела.

Во-вторых, это – динамический диапазон , т.е. диапазон оттенков в оригинале, которые может различить сканер, от абсолютно прозрачного до полностью непрозрачного.

Про глубину цвета

Значительная часть современного программного обеспечения, поставляемого в комплекте со сканером, создает файл с 24-разрядным цветом. Однако внутреннее аналого-цифровое преобразование сканера может задавать значения цветов с количеством разрядов 30, 36 и даже больше. Такая реализация принята потому, что 16 миллионов цветов, доступных при 24 разрядах на пиксел (по 8 разрядов на каждый из основных цветов – красный, зеленый и синий), могут распределяться в изображении неравномерно. Чаще всего теряются оттенки в тенях и на самых светлых участках.

Нельзя забывать, что для любого полупроводникового прибора характерным является наличие шума – исключением не являются и светочувствительные элементы (ПЗС и КДИ). Определенную погрешность в аналоговый сигнал вносят и цепи аналого-цифрового преобразователя.

При очень высокой разрядности, а значит и точности, аналого-цифрового преобразования, достаточно легко «выловить» сигналы, очень похожие на шум. Аппаратные схемы и программные модули могут эту информацию, похожую на шум, просто-напросто, отбросить (отфильтровать). При этом остается достаточно широкий диапазон величин для обработки и сохранения в окончательном 24-разрядном файле. Программными средствами сканеров определяются те 24 бита из, например, 30, которые соответствуют лучшему воспроизведению света и теней. Таким образом, повышение разрядности аналого-цифрового преобразования приводит к «вытягиванию» на выходе сканера глубины цвета до полноценных 24-х бит.

К сожалению, по характеристике цветовой глубины нельзя судить о том, действительно ли все эти биты содержат визуально важную информацию. Значительную роль в качестве конечного изображения играют чувствительность сенсоров и качество аналого-цифровой цепи, а также еще и некоторые другие факторы. Однако, в среднем, можно считать, что чем больше разрядность отсканированного изображения, тем выше качество картинки, хотя по многим заверениям человеческий глаз не «рассчитан» на глубину цвета более 24 бит.

Про динамический диапазон

Эта характеристика крайне редко указывается для сканеров, относящихся к низшему классу, но она очень важна для профессиональной работы с изображениями, и, в первую очередь, при работе с пленками. С характеристикой динамического диапазона неразрывно связана оптическая плотность.

Оптическая плотность - это характеристика оригинала. Вычисляется она как десятичный логарифм отношения света падающего на оригинал к свету отраженному от оригинала (для непрозрачных оригиналов) или прошедшему через оригинал (для слайдов и негативов). Минимально возможное значение оптической плотности 0.0 D – это идеально белый (прозрачный) оригинал. Значение 4.0 D соответствует предельно черному (непрозрачному) оригиналу. Применительно к сканеру его диапазон оптических плотностей характеризует способность сканера различить близлежащие оттенки (это особенно критично в тенях оригинала). Максимальная оптическая плотность у сканера - это оптическая плотность оригинала, которую сканер еще отличает от "полной темноты". Все оттенки оригинала "темнее" этой границы сканер не сможет различить. На практике это означает, что "офисный" сканер может потерять все детали, как в тёмных, так и светлых участках даже обычной фотографии, не говоря уже о сканировании слайда и тем более негатива.

Так, например, если сканер имеет динамический диапазон равный 2,5 D , то он сможет адекватно оцифровывать фотографии, но не сможет работать с негативами, имеющими оптическую плотность более 3,0 D , т.е. что сканер не воспримет наиболее темные участки изображения и произведет неполноценное сканирование.

Типичная пленка имеет минимальную плотность около 0,3 (50% прозрачности) и максимальную плотность до 3,3 (99,5% непрозрачности): диапазон составляет около 3,0 , хотя диапазон некоторых слайдов достигает значения 3,6. Если слайд имеет максимальную плотность (Dmax ) 3,3 , а сканер оперирует значениями только до 3,0, то детали цветов плотностью выше 3,0 , скорее всего, окажутся черными.

Обычная цветная фотография и печатная продукция имеют динамический диапазон - до 2.5D. Негативы и рентгеновские снимки - 3.0-3.6D.

Недорогие планшетные сканеры имеют динамический диапазон 2.0-2.7D , хорошие 36-битные 3.0-3.3D , новейшие модели - 3.6D . Диапазон оптических плотностей сканера определяется, в первую очередь, качеством, типом и разрядностью АЦП, ПЗС-матрицы и алгоритмом работы контроллера сканера, т.е. встроенным программным обеспечением сканера. Математический предел динамического диапазона для сканера с 30-битным АЦП - 3.0D , а для 36-битного сканера - 3.6D (десятичный логарифм от числа возможных градаций для каждого цвета, которое равно 2 в степени количества разрядов на один цвет).

Стоит понимать, что невозможно с приемлемым качеством отсканировать негатив с помощью обычного 30-разрядного планшетного сканера, даже если к нему и продаётся слайд-модуль. Даже имеющий лучшее в своем классе значение реального динамического диапазона 30-битный сканер позволяет терпимо сканировать цветные слайды - но не надо рассчитывать на приемлемые результаты с художественными чёрно-белыми негативами, снятыми профессиональным фотографом. Для негативов нужен сканер другого класса.

Сравнивать характеристики диапазонов плотностей следует с осторожностью. Не существует стандартных процедур измерения и записи диапазона плотностей. Некоторые производители могут выполнять тесты для измерения реального, практического диапазона. Другие приводят только теоретические пределы для своих сканеров. Нельзя принимать решение о выборе той Ии иной модели только на основе заявленных характеристик – лучше выполнить несколько пробных сканирований.

Следует заметить, что слайд-сканеры с диапазоном плотностей выше 3,4 стоят более 10 000 долларов. Это конечно дорого, но планшетные сканеры со сравнимым диапазоном плотностей, такие, как SelectScan Plus компании Agfa, Topaz компании Linotype-Hell и Smart 340 компании Scitex, стоят более 30 000 долл.

За качество всегда приходится платить немалую цену.

» Сканирующие устройства минилабов

Мы продолжаем знакомство с принципами и особенностями работы минифотолабораторий. Попробуем разобраться с тем, как происходит измерение характеристик плотности и цвета негатива и вычисление параметров экспонирования.

Чтобы увидеть и проанализировать увиденное (в нашем случае - негативное изображение на фотопленке), необходимо, как минимум, иметь "глаза и мозги". Функции этих органов в принтере минилаба выполняет сканер. Особенности способа считывания изображения и алгоритма обработки полученных данных определяют степень достоверности вычисления времени экспонирования для получения качественного отпечатка.

Что касается "глаз" сканера, то, чем более подробную информацию о негативе они сообщают компьютеру (чем больше разрешающая способность и динамический диапазон измерительной системы) - тем лучше. Однако, на самом деле, объем обрабатываемой информации ограничен возможностями аппаратных средств компьютера и алгоритма и временем обработки, которое должно быть согласовано с производительностью остальных систем принтера. Тем более что задача, которую призван решать сканер, состоит не только и не столько в компенсации описанных ранее факторов, связанных с негативом, бумагой, оптическим и химическим трактами принтера. Алгоритм сканера должен, в идеальном случае, классифицировать условия съемки объекта и вычислить коррекцию для его оптимального воспроизведения на отпечатке. Следует иметь в виду, что задача определения объекта съемки зачастую не может быть однозначно решена не только мощными программно-аппаратными средствами, но и самим оператором, так как идеальная коррекция плотности для одного участка изображения может привести к потере деталей на другом участке. Например, “выбитое” вспышкой лицо на переднем плане имеет на негативе плотность гораздо выше, чем объекты заднего плана, которые могут представлять не меньший интерес для снимавшего. В этом случае более приемлемым решением может оказаться компромисс, при котором объект переднего плана печатается несколько более плотным, чтобы воспроизвести детали заднего плана. Задачу воспроизведения деталей одновременно с участков негатива повышенной и пониженной плотности решает адаптивное маскирование, примененное в принтере новейшего поколения Agfa MSP DIMAX . В оптический тракт введена жидкокристаллическая матрица, на которой автоматически формируется маскирующее изображение, компенсирующее высокий контраст исходного негатива.

Попытаемся разобраться, как сканеры различных моделей принтеров (Noritsu QSS1401/1501/1201(2)/1701(2) , Gretag MasterOne/MasterLab(+) , Agfa MSC ) справляются со столь сложной задачей, и в какой степени их функционирование может быть оптимизировано настройкой.

Глазами сканера Noritsu является ПЗС матрица 128x128 элементов, на которую через линзу,соответствующую формату пленки, проецируется кадр. Изображение считывается трижды за фильтрами R,G,B. Линзы и фильтры расположены на соосных турелях. После предварительного усиления информация в виде аналогового видеосигнала поступает на процессорную плату сканера, где оцифровывается и анализируется. Несмотря на достаточно большое разрешение ПЗС матрицы и солидную вычислительную мощность процессора этот сканер часто ошибается при вычислении экспозиции. Это обусловлено как несовершенством алгоритма, так и свойствами измерительной системы: характеристики фильтров не адаптированы к спектральной чувствительности фотобумаги и нестабильны во времени (фильтры быстро выгорают). Динамический диапазон измерительной системы недостаточно адаптирован ко всему диапазону плотностей изображения на пленке. Настройка принтера при работе со сканером заключается в калибровке усиления сигнала (потенциометрами на плате предварительных усилителей), определении области ПЗС матрицы, на которую проецируется кадр (для каждого формата пленки), и запоминанию величин для неэкспонированного кадра пленки. Практика показывает, что, для снижения процента брака, операторы Noritsu предпочитают работать в полуавтоматическом режиме, когда сканер корректирует только цветовые сдвиги, а оператор вводит поправки по плотности. Функция цветовой коррекции ухудшается по мере выгорания фильтров, и зачастую роль сканера сводится к позиционированию кадра.

Сканер упомянутых моделей Gretag работает гораздо эффективнее при определении коррекции как по плотности, так и по цвету. Его измерительная система представляет собой линейку фотодиодов, которая сканирует кадр в 12 позициях за каждым из фильтров R,G,B (для полного кадра формата 135 сканируется массив данных 8x12 точек для каждого из цветов) (рис.1 ). Такое небольшое разрешение накладывает определенные ограничения на эффективность распознавания мелких объектов, однако алгоритм обработки неплохо справляется с классификацией типичных сюжетов. Линейка фотодиодов является единственным органом зрения принтера (принтеры Noritsu , помимо матрицы сканера, имеют три фоточувствительных датчика R,G,B, осуществляющих интегральное измерение плотности кадра). Поэтому работа без сканера возможна лишь в режиме фиксированной экспозиции. Сигналы с фотодиодов, после адаптивного усиления, оцифровываются 12-разрядным АЦП, что обеспечивает достаточный динамический диапазон измерительной системы. Алгоритм классифицирует изображение, пытаясь отнести его к одной из групп по условиям съемки (Flash-1, Flash-2, Back Light, Green, Snow). Для каждой группы оценивается вероятность отнесения к ней сюжета, и полученные величины участвуют в процессе вычисления времени экспонирования наряду с параметрами в памяти принтера, определяющими степень коррекции для каждой из групп. К группе Flash-1 относятся сюжеты с ярко выраженным объектом высокой плотности в центре кадра (предполагается, что объект переднего плана снят со вспышкой и требуется плюсовая коррекция плотности для его нормального воспроизведения). Типичный пример - лицо на переднем плане, снятое со вспышкой. Если один или несколько плотных участков негатива смещены от центра, сканер анализирует их цветовой баланс и в случае близости с балансом человеческой кожи принимает их за объект съемки, относя сюжет к группе Flash-2, и, также как в предыдущем случае, осуществляет плюсовую коррекцию плотности. Сканер относит сюжет к группе Back Light (яркий фон), если обнаруживает достаточно большой участок негатива повышенной плотности, ограниченный краями кадра. Такой участок классифицируется как яркий фон и применяется минусовая коррекция плотности. Типичный пример - яркое небо на заднем плане. Сюжеты с объектами на фоне ярко освещенной зелени классифицируются как группа Green и требуют минусовой коррекции. Следует отметить, что, хотя сканер принимает во внимание цветовой баланс при отнесении сюжетов к группам Flash-2 и Green, соответствующая коррекция производится только по плотности. К группе Snow сканер относит низкоконтрастные объекты на однородном светлом фоне (снежный пейзаж, небо). Такие сюжеты требуют минусовой коррекции. Специальные кнопки на клавиатуре позволяют "подсказать" сканеру, с каким случаем он имеет дело.

При вычислении цветовой коррекции используются установленные в памяти пределы цветового сдвига по каждой из цветовых осей (Y-B, M-G, C-R плюс дополнительные оси для цвета ламп накаливания и люминесцентных ламп), при превышении которых коррекция не применяется (предполагается наличие естественной цветовой доминанты). Степень коррекции определяется заданной в памяти величиной максимума (Color Correction Factor) и величиной отклонения от “серого центра”. Она максимальна при малых отклонениях и линейно уменьшается до нуля с приближением к установленным пределам. Баланс “серого центра” индивидуален для каждой пленки. В памяти хранятся величины средней плотности нормального негатива и маски для каждого настроенного пленочного канала в соответствии с DX-кодом. По этим величинам ведется статистика, и заданные величины могут со временем уточняться с использованием статистических данных. При вычислении отклонения по плотности и цвету каждого кадра измеренная интегральная плотность сравнивается с плотностью нормального негатива с учетом отклонения маски.

Сканер показывает приемлемые результаты при работе в автоматическом режиме. Ошибки по плотности составляют в среднем 5-10%. Приведем типичные случаи ошибок. При смещении от центра до соприкосновения с границей кадра объекта переднего плана, снятого со вспышкой, сканер может отнести сюжет к группе Back Light, вместо Flash-1, и применить коррекцию с обратным знаком. Человеческие лица на групповой фотографии могут оказаться слишком мелкими объектами для сканера. Он не применит поправку, предусмотренную для сюжета Flаsh-2, и они окажутся на отпечатке слишком светлыми. Сюжет, содержащий белые объекты,снятые при вечернем или желто-красном искусственном освещении (корабль, здание), может быть отнесен сканером к группе Flash-2. В этом случае принтер напечатает слишком плотный отпечаток, приведя белые объекты к нормальной плотности человеческого лица. Часто сканер пытается привести к средней плотности светлую рубашку, принимая ее за основной объект переднего плана (Flash-1). Ясно, что портрет при этом оказывается слишком темным. Существенные цветовые сдвиги, обусловленные нарушением процесса обработки и хранения пленки, почти не корректируются. Не удается избежать некоторого искажения цветов при наличии в сюжете небольших цветовых доминант. При ручной печати опытный оператор может предвидеть некоторые из упомянутых ситуаций и попытаться их исправить. Оптимизация работы алгоритма сканера является процессом нахождения компромисса путем подстройки в памяти одноименных параметров, отвечающих за степень коррекции каждой из сюжетных групп. Также компромиссом между качеством печати сюжетов с цветовыми доминантами и коррекцией нежелательных цветовых сдвигов является настройка величин пределов коррекции и CCF.

Наилучшие результаты при автоматической печати показывает TFS-сканер семейства принтеров Agfa MSC . Технология “Total Film Scanning” позволяет печатать всю продукцию в общем для всех пленок канале с минимальным участием оператора (только загрузка пленки). Вполне удовлетворительно корректируются даже пленки с серьезными отклонениями, обусловленными нарушением процесса обработки и хранения. Процедура настройки принтера предельно проста. Попробуем разобраться, какими средствами достигается эта простота. “Глаза” сканера представляют собой три линейки из 16 фоточувствительных элементов, каждая из которых экспонируется одной из основных спектральных составляющих света, а также дополнительная линейка для анализа плотности негатива (рис.2 ). Блок фильтров сканера имеет характеристики, адаптированные к спектральной чувствительности эмульсии используемого типа фотобумаги, и выполнен в виде сменной обоймы. Это позволяет сканеру видеть негатив “глазами” фотобумаги. Подвижные части отсутствуют - сканирование происходит по мере подачи пленки. При сканировании полного кадра пленки формата 135 компьютер получает массив данных в 16x31 точках для каждого из трех основных цветов. При загрузке пленки она полностью сканируется. Данные, полученные по всей пленке, анализируются алгоритмом сканера, и выявленные особенности принимаются в расчет, наряду с информацией о каждом кадре. Полученной информации оказывается достаточно, чтобы алгоритм правильно вычислил не только коррекцию, связанную с особенностями пленок разных типов и производителей, но и скомпенсировал цветовые сдвиги пленок с различными отклонениями от нормы. Классификация индивидуальных кадров по сюжетным группам осуществляется подобно тому, как это происходит в сканере Gretag , но с более надежным результатом, что обусловлено как более высоким разрешением, так и информацией о других кадрах пленки. Заслуживает внимание работа алгоритма с сюжетами, содержащими цветовую доминанту. При расчете цветовой коррекции индивидуального кадра алгоритм игнорирует участки с повышенным цветовым сдвигом, что позволяет получить неискаженную цветопередачу объекта в сюжете с цветовой доминантой.

Настройка параметров сканера DL1, DL2, DL3, хранящихся в памяти принтера, позволяет оптимизировать распознавание и коррекцию сканером специфических условий съемки. Например, если замечено, что отпечатки с контрастных негативов, содержащих объект на переднем плане, снятый со вспышкой, получаются недоэкспонированными, следует слегка увеличить параметр DL1. Параметр DL2 отвечает за распознавание и коррекцию контрастных сюжетов с ярким фоном. Как и в случае с Gretag оптимизация этих параметров является поиском некоторого компромисса. Коррекция же негативов с низким контрастом, а также сюжетов на фоне больших водных поверхностей, снежных пейзажей и т.д., производится регулировкой параметра DL3.

При правильной настройке указанных параметров и регулировке порога распознавания цветовых доминант работа оператора в режиме автоматической печати становится чрезвычайно простой и удобной, даже если на пленке имеются кадры со значительными отклонениями от нормальных условий экспонирования.

Завершая сравнительный обзор принципов работы сканеров в МЛ и их возможности по коррекции плотности и цвета фотоотпечатков, хотелось бы отметить, что даже самый лучший сканер, снабженный хорошим алгоритмом, не в состоянии скомпенсировать серьезные отклонения технологических параметров процессов обработки пленки и бумаги от нормальных. Другими словами, всегда нужно помнить, что корректирующая работа сканера наиболее эффективна при условии нормальной, с химической точки зрения, работы как фильмпроцессора, так и бумажного процессора.

Игорь ГОРЮНОВ, Павел ЗАХАРОВ

Ссылки на связанные темы:

Описания минифотолабораторий
Периодически обновляемый раздел сайта, посвященный описаниям, в первую очередь, новых, а так же, по мере возможности, старым моделям минифотолабораторий.

Так как в этой статье мы будем говорить исключительно о сканировании прозрачных оригиналов - слайдов и негативов, - то я опущу все рассуждения о непрозрачных образцах. Статья написана для читателя, подготовленного в области фотографии и компьютерной обработки изображения, а также владеющего основными понятиями: интервал оптических плотностей, полезный интервал оптических плотностей, широта фотоматериала, контраст, средний градиент и т.п.

А что имеем?

Д ля начала рассмотрим параметры сканера Epson Perfection 1650 photo. Он единственный, который у меня есть, и было бы странным, если бы я описывал нечто иное. Итак, по некоторым данным этот сканер в режиме сканирования прозрачного оригинала может воспринимать разницу плотностей ΔD scanner =3,2, по другим данным его динамический диапазон составляет ΔD scanner =3,0. Проведенные мною исследования говорят о гораздо более скромных характеристиках по этому параметру, стало быть, производители лукавят (хотя, они вообще не указывают динамический диапазон, по крайней мере для сканеров этого уровня), говоря, что мы можем «безболезненно» сканировать цветной негатив. Я утверждаю, что в том виде в каком сканер поставляется, цветной негатив без потерь отсканировать невозможно. Итак, приступим.

Что означают все эти буквы, цифры?

D - плотность, или десятичный логарифм непрозрачности. Известно, что человеческий глаз воспринимает равномерно увеличивающейся по яркости такую шкалу, поля которой по коэффициенту отражения (или пропускания) идут не в арифметической прогрессии (10%, 20%, 30%…), а отличаются друг от друга в геометрической прогрессии (1%, 2%, 4%, 8%…) - а это есть ни что иное, как логарифмическая зависимость. Вы, наверное, знаете, что и нотный ряд, его частоты (колебания струны) отличаются друг от друга тоже в геометрической прогрессии. Тоже самое можно сказать и о силе звука, которая измеряется в известных вам децибелах.

Итак, человеческий глаз воспринимает соотношение оттенков по логарифмическому закону, поэтому в технике сканирования и т.п. используется именно эта шкала. Изменение на D=0,3 в большую сторону говорит о том, что глаз видит объект в 2 раза темнее. Измеряется плотность в белах.

D max - максимальная плотность; D min - минимальная плотность; ΔD - соотношение неких плотностей, как правило D max -D min ; ΔD scanner - диапазон плотностей (D max -D min), которые способен воспринимать сканер.

Как проводились исследования

Д ля того, чтобы иметь большой диапазон плотностей, я использовал сенситограмму черно-белой фотопленки, мне известны все абсолютные плотности ее полей (с учетом минимальной плотности D min , или, проще, с учетом «плотности вуали»), промер за статусом «М» денситометра. Сканирование ч/б негатива, как правило происходит в «смешанном» канале, поэтому сканировать я буду именно его. За поле с плотность D=0,0 я принял само свечение лампы, т.е. отсканированный участок изображения без пленки. Сенситограмма имела максимальное почернение D max =2,3, для того что бы получить почернение с плотностью D max =2,6 я использовал нейтрально-серый фильтр с плотностью D=0,3, прижатый к области макимального почернения сенситограммы. Сканирование производилось программой Xsane (платформа Линукс) на разрешении 300 dpi в ч/б режиме без каких-либо корректировок (яркость, контраст, уровень «серого»), предостовляемая Xsane возможность задать яркость «железом» не использовалась. Полученный 16-битный файл измерялся «пипеткой» 5×5 пикселей в Photoshop"е.

Полученные результаты:

D test 0,0 0,3 0,35 0,4 0,48 0,54 0,65 0,8 0,9 1,0 1,15 1,3 1,4 1,5 1,6 1,7 1,8 1,9 1,96 2,06 2,1 2,2 2,3 2,36 2,4 2,5 2,6
D scan 0,0 0,17 0,2 0,22 0,26 0,3 0,36 0,43 0,5 0,57 0,63 0,72 0,8 0,85 0,92 0,96 1,1 1,1 1,15 1,15 1,2 1,3 1,3 1,4 1,4 1,4 1,4
% 0,00 33 38 41 46 51 57 63 68 73 77 81 84 86 88 89 92 92 93 93 94 95 95 96 96 96 96

Где: D test - плотность в испытуемом негативе;

D scan - значение персчитанное из процентов почернения Photoshop"а в белы;

% - процент почернения измеренный Photoshop"ом.

Анализировать полученные значения без подготовки достаточно трудно, да и не нужно. На основании этих данных был построен график (характеристическая кривая), по оси X были отложены значения D test , по оси Y - значения D scanner .

Анализ полученных данных

Т еперь анализировать график гораздо легче:-) Итак, что мы видим: кривая графика до D test =1,6 достаточно ровная и плавная (обозначена зеленым цветом), значит сканер передает значения до этой плотности почти пропорционально, без искажений.

Между D test =1,6 и D test =2,35 кривая имеет вид ломаной линии (обозначена желтым цветом), поэтому осмелюсь предположить, что на этом участке характеристической кривой сканер выдает «додуманные значения». Т.е. матрица их воспринимает, но выдает что-то невразумительное, что бы «переварить» их в «нормальный» вид, сканеру приходиться корректировать эти значения. Это можно сравнить с «децибельником» в профессиональных видеокамерах. Когда уровня освещенности объекта недостаточно, оператор включает «децибельник», камера начинает увеличивать уровень сигнала получаемого от матрицы, фактически происходит усиление электрического сигнала. Увеличивается и то, что нужно, и то что не нужно. Таким образом, одновременно c изображением, происходит усиление шумов. В сканере происходит нечто похожее: на этом участке D test появляются шумы, поэтому кривая и имеет вид ломаной.

А теперь самое веселое. Кто там писал про ΔD scanner =3,0 у этого сканера? Ну-ну… За значением D test =2,35 этот сканер вообще ничего не воспринимает! Так что ΔD epson_perfection_1650_photo =2,4! , да и то, только потому, что D test =2,35 является последним полем, которое имеет возвращенное сканером значение отличное от предыдущего. Сами понимаете, кроме как красным цветом я это выделить не мог:-)

Итоги:

  • Сканер способен нормально, почти без искажений воспринимать плотности прозрачного оригинала до 1,6;
  • Сканер, внося искажения и «шумы», но все же способен воспринимать плотности от 1,6 до 2,35;
  • Сканер слеп за плотностью 2,4, любую плотность выше этого значения он воспринимает как черное.

Что делать?

Д авайте посмотрим, что нам предлагает производитель сканера. В Xsane (если быть точным, то в backend"е Sane) есть возможность регулировать яркость с помощью «железа». Т.е. сканер как бы повышает яркость лампы, для того чтобы «пробить» D max =2,4. На самом деле, никакого повышения яркости лампы не происходит, сканер (а точнее его firmware) обрабатывает получаемые значения, в результате мы должны получить более высокое значение максимальной плотности, которое сканер интерпретирует как черное. Итак, будем использовать возможности предоставленные производителем. Устанавливаем значение Brightness в Xsane на максимум, который позволяет «железо». В нашем случае это 3.

Как и в предыдушем тесте, строим график по полученным результатам (дабы не перегружать читателя информацией, я их не привожу).

Для сравнения была оставлена первая характеристическая кривая (test 1 ), новая кривая (Brightness=3) обозначена красным цветом цветом (test 2 ). Приступим к сравнительному анализу: сканер как имел ΔD scanner =2,4 так и имеет, на основании чего можно судить о том, что «децибельник» (режим усиления сигнала) включен всегда, и работает на участке D test =1,6 D test =2,4, так как никаких новых, более высоких значений D max_test сканеру различить не удается.

Характерная ломаная линия на участке D test =1,6-2,4 стала плавной, что говорит о том, что firmware сканера, при включении опции повышения яркости, преобразует получаемые от матрицы значения более правильно с точки зрения тонопередачи. Но если судить по изображениям, «шумов» от этого меньше не становится, их становится только больше, так как происходит их усиление, или, возможно, «шум» становится более ровным. Скорее всего, верно последнее.

Теперь взглянем на участок от D test =0,0 до D test =0,5, кривая на этом участке имеет низкое значение гаммы. То есть света будут переданы мягко, и светлее чем они есть на самом деле.

Оценим полученный результат в целом: повышение яркости происходит не за счет эффективного использования плотностей, а за счет изменения уровня всех плотностей (обратите внимание, каким тоном передается значение «черного», если в test 1 он находится на значении D scanner =1,4, то в test 2 на значении D scanner =1,2). Применять эту опцию не имеет смысла. Никакого полезного увеличения яркости мы не получим. «Серое поле» станет светлее; «белое поле» останется таким же, каким и было; «черное поле» тоже станет светлее, но никаких новых деталей там не появится. Сканер как «видел» D scanner =2,4, так и «видит». Зато повыситься уровень «шумов».

Честно говоря, когда я делал этот тест, то думал, что Epson все же «сдвинет» кривую вправо, т.е. мы потеряем детали в светах, но получим в тенях, т.е. D scanner не измениться, но будет работать на другом участке D test =(D max -D min). Возможно, производитель пытался реализовать эту возможность. На это указывает характеристическая кривая в диапазоне D test 0,0-0,5. Предположу, что сделано это для того, чтобы не терять детали в светах в случае смещения кривой вправо. На практике, уменьшился только средний градиент.

Сканирования черно-белых негативов.

П опытаемся доказать на практике полученные результаты. Для «чистоты» эксперимента я буду все время использовать один единственный черно-белый негатив. Замечу, что используемый негатив имеет нормальные плотности, а также проявлен до среднего градиента 0,62, что де-факто является стандартом. В кинолаборатории он печатается на 11-м свету, что является нормой.

Как мы уже выяснили, одной из проблем сканирования как негативов, так и слайдов является наличее «шумов» в изображении. Это явление особенно заметно при сканировании достаточно плотных (темных) оригиналов. Связано это с ограниченностью диапазона оптических плотностей ΔD scannner =D max -D min .

Например: сканер Nikon Coolscan 4000 способен воспроизвести диапазон оптических плотностей 4,2 (так не хочется никого огорчать… про Epson 1650, я уже выяснил его ΔD=3,0:-)). Сканеры попроще имеют более скромные показатели.

Максимальный интервал оптических плотностей ч/б негатива 2,5, ΔD max слайда = 3,0, цветного маскированного негатива около 2,5, но из-за наличия маски этот тип негативов обладает большим D min .

Я убежден, что ΔD scanner =3,0 вполне достаточно для сканирования чего угодно, кроме, пожалуй, рентгеновских снимков. Проблема состоит в том, на каком участке негатива (слайда) находится этот ΔD scanner =3,0. Попробую объяснить почему.

Отбросим знания о фотобумаге, она бывает особоконтрастная, контрастная, нормальная, полумягкая, мягкая. Будем использовать в примере нормальную бумагу, потому что регулировать контраст позитивным материалом - «преступление». Позитив должен быть стандартным (такие правила в кинематографе, да и в фотолабораториях тоже), надо уменьшить/увеличить контраст - работай с негативом (меняй время проявления, делай ДДЗ, используй фильтры, контратипы и т.д.). Итак, используем стандартный позитив.

Знаете, какой диапазон плотностей позитив способен воспроизвести? ΔD=1,0! Всего!

Данные даны без учета минимальной плотности.

Вот так-то! Таким образом фотобумага не воспроизводит весь интервал плотностей негатива, это не нужно, это вредно! Получится дико «мягкая», малоконтрастная, «не сочная» картинка, даже если на отпечатке будет присутствовать и белое, и черное поле! Не верите - найдите негатив с таким интервалом (ΔD=2,5), и отсканируйте! Его еще найти - проблема… Здесь я использовал сенситометрический клин (тот самый), его плотности мне известны: черное поле (вуаль) - 0,3; белое поле (максимальное почернение) - 2,3, таким образом ΔD нег =2,0. Точке с плотностью 0,3 присвоил «черное», точке с плотностью 2,3 присвоил «белое», затем в этом же режиме отсканировал образец нашего негатива. «Красотища», правда? Надо признаться, что я приподнял немного уровень серого, негатив получался совсем темным. Но критические точки черного и белого остались на своих местах. Так, что средний градиент не изменился.

Далее, я присвоил в соответствии с сенситограммой, полю с плотностью 0,1 (над вуалью) «точку черного», полю с плотностью 1,1 - «точку белого», и для поля с плотностью 0,6 присвоил «точку серого», т.е. я сымитировал нормальную фотобумагу. Вот, что получилось:

Какой вывод можно сделать из всего выше сказанного - да то, что негатив содержит огромное количество плотностей, которые в позитиве не пропечатаются. В начале XX века ходила байка, что средний градиент (коэффициент контрастности) негатива при умножении на средний градиент позитива должен давать 1,0, тогда, мол, градации будут переданы правильными тонами. Что в итоге? - вялые изображения! Произведение должно быть 1,7~2,2.

Таким образом, для сканирования негатива достаточно даже ΔD scanner =1,7 на случай, если мы захотим сымитровать «особомягкую» бумагу.

Для наглядности на графике характеристической кривой я отметил полезный интервал плотностей негатива. Тест-объект с такими плотностями (симпатичная девушка и ряд серых плотностей) поставляется фирмами-производителями фотопленок для отстройки работы минилабов.

Как видите, полезный интервал плотностей негатива без каких-либо трудностей помещается в «безопасный» интервал плотностей воспринимаемых сканером. Если мы правильно экспонировали пленку, то мы можем позволить себе даже D min =0,5, но для ч/б негатива (не маскированного) это очень большая минимальная плотность.

Какой вывод можно сделать? Для сканирования нормального ч/б негатива более чем достаточно ΔD scanner =1,6~1,7.

Сканирование цветных маскированных негативов

К ак было сказано выше, цветной маскированный негатив имеет ΔD max =2,5, обладая при этом высокими значениями минимальной плотонсти D min . Для примера, измеренный мною цветной негатив Fuji имел следующие значения D min:

Если рассуждать грубо, то это почти норма (под рукой нет ГОСТа). Теперь сложим значения полезного интервала плотностей цветного негатива (они такие же, как у ч/б пленки) со значениями D min по каждому каналу.

Для наглядности, отметим это на нашем графике характеристической кривой (характеристические кривые всех трех каналов похожи; вполне допустимо изобразить одну)

Не сложно заметить, что красный канал, без проблем помещается в «безопасной» зоне, имеется даже небольшой запас; зеленый канал заходит в «опасную» зону темными участками негатива (в позитиве они станут светами); синий канал заходит в «опасную» зону наполовину, от серого до белого участка в позитиве.

Следовательно, в красном канале «шумов» не будет; в зеленом канале канале «шумы» появятся в светлых участках позитива; в синем канале «шумы» будут от серого до белого. Давайте попробуем это подтвердить.

Как я уже говорил, я буду использовать один и тот же ч/б негатив. Чтобы сымитировать цветную маскированную пленку, на негатив был наложен неэкспонированный отрезок цветной негативной пленки Fuji. Также я продемонстрирую гистограммы получаемых результатов. Итак, сканируем «цветной» негатив!

Из-за наличия оранжевой маски, которая обернулась и стала голубой, позитив выглядит голубым. Голубым мы его видить не хотим, что делать? Увеличить «софтом» гамму синего слоя так, чтобы «белое» поле стало не голубым, а белым. Ну что же, попробуем. Подвинем «движки» на гистограмме так, чтобы изображение стало нейтрально-серым во всех плотностях, от черного до белого.

И, о чудо! Нормальная по цвету картинка, ну, почти:-). А теперь давайте откроем ее в графическом редакторе, и поглядим на разобранное по каналам изображение:

Красный Зеленый Синий

В красном канале шумов почти нет, в зеленом не велики и вполне допустимы, а вот в синем шумов много. Это не шум сканера, это проблема сканирования маскированных пленок, а точнее «растягивания» синего канала. Чтобы доказать это, я отсканировал этот же ч/б негатив, но без маски в режиме RGB и тоже продемонстрирую в разобранном на каналы виде:

Красный Зеленый Синий

Как видите шумов нет ни в одном из каналов. Итак, наш «враг № 1» - желто-оранжевая маска! А точнее, высокая минимальная плотность за синим фильтром. И с ней приходится бороться.

Конечно, при фотопечати этих проблем не возникает, фотобумага (не советская:-)) уже сбалансирована по светочувствительности слоев под оранжевый цвет маски. У современных цветных фотобумаг светочувствительность к синим лучам примерно в 20-30 раз выше, чем к красным. Дело в том, что фотобумага (в фотоувеличителях, в фотопринтерах) экспонируется не белым светом, а желтоватым светом лампы накаливания, да еще прошедшим через оранжевую маску. В сканерах, которые специально не предназначены для сканирования негативов, матрицы балансируются для оцифровки слайдов и НЕмаскированных негативов.

Производители сканеров пытаются решить эту проблему разными путями. Мой Epson, например, позволяет сканировать 48-ми битное изображение, по 16 бит на канал, чтобы было чего «растягивать». Эффект, конечно, есть. По сравнению с 8-ми битной картинкой разница колоссальная. Nikon же в своих сканерах использует дорогую матрицу, способную «видеть» ΔD=4,2, но там другие проблемы, как раз из-за этого:-)

Кстати, на Epson"е плохо сканируются не только цветные негативы, но и плотные (допустимо плотные, разумеется) ч/б негативы, а также плотные слайды. Причины смотри выше.

Таким образом, то, что предпочтительно для фотопечати (передержка негатива на ½ диафрагмы), становится катастрофой при сканировании. Как же с этим бороться? Что делать?

Что делать? Дубль два!

Т о же, что при фотопечати: увеличить экспозицию!

Если при фотопечати мы можем увеличить выдержку или приоткрыть диафрагму, то при сканировании мы сможем только увеличить яркость источника света (т.е. лампы). Хотя, в варианте «от производителя» мы даже этого сделать не сможем. Я, по крайней мере, не слышал о реализации этой возможности в «бюджетных» моделях. Это все, конечно, здорово, но применимо только к сканированию ч/б негативов. В цветном варианте необходимо использовать регулировку экспозиции по трем каналам (на самом деле достаточно двух - по синему и зеленому каналу, голубой маски я никогда не видел). Существуют разные пути для реализации этой возможности:

  1. Использовать цветосмесительную головку от цветного фотоувеличителя, или цветные фильтры, противоположные цвету маски (например, компенсационный синий фильтр для ламп накаливания), чтобы так сказать, «нейтрализовать» маску - сделать ее нейтрально-серой. И повысить яркость лампы, дабы «пробить» полученную равную по каналам D min_негатива.
  2. Использовать три прохода (по одному на канал) с разной экспозицией для каждого из каналов.
  3. Пути решения для производителей:
    • использовать лампы разного типа для сканирования цветных негативов (с более высокой цветовой температуры), и слайдов;
    • использовать лампы более высокой яркости (с запасом), и возможностью эту яркость уменьшить (хорошей идеей кажется использование серого фильтра вводимого перед лампой, никаких изменений цветовой температуры!).
    • Использовать две матрицы. Одну сбалансированную для слайдов, вторую для маскированных негативов (дорогой путь).

Что же делать обычному пользователю? Думаю, что описанные в первом и втором пунктах решения возможно реализовать в домашних условиях. Более реальным мне кажется первый вариант. По крайней мере, сделать Preview можно без использования специфического «софта» (никто написать не хочет? :-)). Например, сделать «световой бокс» с возможностью вставлять фильтры и таким образом регулировать цветность и яркость светового потока. Или использовать цветную головку от увеличителя. А родную лампу оставить для ч/б негативов нормальной для сканера плотности, а также нормальных слайдов.

Все-таки почему достаточно ΔD scanner =3,0

Д а потому, что на слайде если и есть большая плотность, то скорее всего она не нужна, нужно уметь использовать хотя бы ΔD scanner =3,0, но в том месте интервала плотностей оригинала, где это действительно требуется. Проблема состоит в том на каком участке негатива (слайда) находится этот ΔD scanner =3,0. Делать ΔD scanner больше, просто нет смысла, а в случае с Coolscan"ом даже вредно. Потому, что в итоге с негатива получается достаточно мягкая (или малоконтрастная) картинка. Любое же повышение контраста, или гаммы, с помощью «софта» повышает уровень «шумов». Правда, можно отсканировать изображение с разрешением 4000 dpi, провести все корректировки, и уменьшить разрешение. Но тогда получается, что 4000 dpi нужно только для того, что бы затем его уменьшив, подавить шумы? Запутанно получилось… сорри. В любом случае это очень хороший сканер, за те деньги которых он стоит. Короче, нужно увеличивать не ΔD scanner , а добавить возможность регулировать экспозицию!

Забери свой негатив обратно! Мне нужен слайд!

К огда-то, я не очень хорошо себе представлял, почему полиграфисты терпеть не могут сканировать негатив, предположений было много: не хотят возиться с цветопередачей, поднимать контраст - и все в этом роде. Основная причина состоит в другом. В принципе «шумы» есть всегда, либо они видны, либо нет. Так вот, из всего вышесказанного следует, что «шумы» имеют свойство появляться в наиболее темных участках оригинала. При сканировании слайда «шумы» оказываются в тенях, а разглядеть «шумы» в тенях достаточно проблематично. При сканировании негатива «шумы» также оказываются в его наиболее темных участках. И все было бы неплохо, если не надо было негатив обращать. Уже догадались? При обращении негатива в позитив «шумы» оказываются в светах, и рассмотреть их не составляет никакого труда, а вот не заметить - действительно, проблема. К тому же, при современных реализациях сканеров, даже профессиональных, отсканировать негатив качественно практически не возможно! Для этого нужно управлять экспозицией. Вы знаете такие сканеры? Если да, пришлите мне на e-mail названия и, если возможно, ссылки.

Что скажешь о новых ч/б маскированных пленках?

С кажу, что Леонид Васильевич Коновалов сделал эту «новую» пленку на «Свеме» еще в 1989 году (могу соврать, но времена те), для того что бы «безболезненно» использовать ч/б кинокадры в цветной печати. Ну, да ладно… Основной цвет маски «оранжевый», следовательно, лучше всего через нее проходят красные лучи. Как следствие, маска имеет самую низкую минимальную плотность в красном канале. Просто сканируйте красный канал. Если такой опции нет в вашем драйвере, сканируйте RGB и берите красный канал; «остальное» можно выкинуть:-).

Что нужно домохозяйке?

Д ля того, что бы качественно отсканировать стандартный негатив, домохозяйке нужен сканер имеющий ΔD scanner >=1,7 и три «ручки». Две для регулировки количества синего и зеленого света, и «ручка» регулирующая общую яркость источника света. Для сканирования стандартного слайда нужен сканер имеющий ΔD scanner >=2,5 и «ручка» регулировки яркости лампы.

Выводы:

  1. Сканер Epson Perfection 1650 photo имеет ΔD scanner =2,4, полезный интервал плотностей ΔD scanner =1,6.
  2. В том виде, в каком сканер поставляется производителем, он годен для сканирования:
    • ч/б негативов, в том числе маскированных (красный канал);
    • слайдов нормальной плотности с небольшим количеством темных участков;
    • немаскированных цветных негативов (помните советскую пленку ДС-4?);
    • сканер условно годен для сканирования цветных маскированных негативов (практическое применение этих «сканов» под большим вопросом; годятся только для «превьюшек»).
  3. Чем более плотный оригинал мы сканируем, тем больше имеем «шумов».
  4. Сканер можно адаптировать для сканирования цветных маскированных негативов, если «прикрутить» к нему лампу большей мощности, и использовать цветные (сине-голубые) фильтры для коррекции цветности светового потока.

Лирическое отступление (циничное)

В общем-то, это нормальная ситуация, когда сканеры делают люди, которые кроме фотографии жены ничего не сканировали и имеют скудные знания о негативах, позитивах, и остальной «ерунде». Кинокамеры (да и не только камеры) делают люди, которые в кино не работают. Эти же ребята (камень в огород кодака и фуджи) придумали маску для цветной пленки (если кто не в курсе, толку от нее мало, практически нет) и четвертый фиолетово-чувствительный слой, вместо того чтобы изменить спектральную чувствительность красного слоя. Именно из-за этих «друзей» в нашей стране вместо своего, нормального, был введен неправильный стандарт измерения плотностей (зато соответствует мировому!), а то, что кривые на идеальной пленке имеют из-за этого разную гамму - так это никого не волнует. Так, лирическое отступление…

А как сканируешь ты?

Ф ирменные эпсоновские «дрова» годятся только для проверки работоспособности сканера при покупке, ну и сканирования текстов (в 48-битном режиме:-)). Я использую линукс с программой Xsane, потому что там есть «вагон и маленькая тележка» ручных настроек, в том числе настроек железа. И главное - Xsane ничего не стоит! Почему не использую SilverFast ?, потому что его у меня нет:-), а моя демо-версия «приказала долго жить». Если кто-нибудь даст - не обижусь:-). На днях попробую VueScan , говорят неплохая программа для сканирования, и есть версия под линукс. В планах прикрутить цветную головку от «Krokus GFA» к своему сканеру. Думаю, что сделаю это в ближайшее время.

На фото пейзаж неподалеку от станицы «Казанская» Ростовской области.

Благодарность.

В ыражаю огромную признательность Леониду Васильевичу Коновалову за помощь в исправление, по его собственному выражению, «орфографических» ошибок.

Материалы использованные при написании статьи:

  • Л.В. Коновалов, «Как разобраться в кинопленках», ВГИК, 1997г.
  • В.А. Яштолд-Говорко «Печать фотоснимков», «Искусство», 1967г.
  • Материалы сайта bog.pp.ru

Ответственность?

А что это такое? :-)

Мнение автора по изложенному выше вопросу не является «истиной последней инстанции». Я лишь излагаю то, что проверил, попробовал, «пощупал»… Мнения, выводы, результаты и утверждения автора могут не совпадать с вашими, или кого-либо еще. Данные в статье рекомендации не следует воспринимать как руководство к действию. Все предложения, которые вы, возможно, реализуете в вашем оборудовании после прочтения этой статьи, вы совершаете на свой страх и риск. Автор не берет на себя ответственности за любой ущерб, который может быть прямо или косвенно причинен использованием рекомендаций, изложенных в данной статье.

Авторские права

Э та статья, а также ее переводы, могут быть воспроизведены и распространены полностью или частично на любом носителе физическом или электронном, при условии сохранения этой заметки об авторских правах на всех копиях. Коммерческое распространение разрешается и поощряется; но автор статьи желал бы знать о таком использовании.

Все переводы и производные работы, выполненные на основании этой статьи должны сопровождаться этой заметкой об авторских правах. Это делается для предотвращения ограничения свободного распространения этой статьи. Исключения могут составить случаи получения особого разрешения у автора, с которым можно связаться по адресу приведенному ниже.

Автор хотел бы распространить эту информацию по разным каналам, но при этом сохранить авторские права и быть уведомленным о всех планах распространения статьи. Если у вас возникли вопросы, обратитесь к автору этой статьи по электронной почте: [email protected] .

Василий Гладкий , 2003

Для перевода негативов или слайдов в цифровой формат используют специальное устройство - сканер для пленки. Он отличается от обычного сканера тем, что предназначен для обработки небольших прозрачных изображений, которые имеют большое разрешение. Хотя многие снабжаются специальными модулями, позволяющими сканировать слайды, но продукт, полученный в результате, отличается невысоким качеством.

Только CCD (ПЗС) элементы сканирования могут обеспечить требуемую для изображений с высоким разрешением. Поэтому все сканеры для пленки построены с их использованием. Некоторые модели имеют одну линейку ПЗС. В этом случае для перевода в цифровой формат требуется трехкратное прохождение продлевает сканирование, но не влияет на его результат. В основном сканер для пленки имеет ПЗС матрицу, и оцифровка изображения происходит за один проход. Некоторые модели применяют многоразовый проход для уменьшения ошибок в итоговом изображении.

Важным параметром, на который стоит обратить внимание при выборе сканера, является оптическое разрешение. Ширина самой распространенной пленки составляет 35 мм, а само изображение имеет еще меньшие размеры. Поэтому величина оптического разрешения должна быть не меньше 2400 dpi (точек на дюйм). Существуют сканеры, обеспечивающие 4800 и 5400 точек на дюйм. И хотя сегодняшний уровень технологий позволяет достичь еще больших значений, это нецелесообразно - размеры зерна даже мелкозернистой пленки будут намного больше пикселя.

Особое внимание стоит обратить на динамический диапазон или оптическую плотность. Чем выше значение этого параметра, тем качественнее сканер для негативов может передавать полутона и плавные переходы цвета. Для качественной обработки пленки значение оптической плотности должно быть в диапазоне от 3,2 D до 3,6 D. Приобретать модели с больше нет смысла, так как подавляющее большинство пленок имеет именно такие значения.

На качество оцифровки влияет еще и разрядность представления света, которая характеризует цветопередачу. Современный сканер для пленки может иметь 42 или 48 битовое представление цвета, но обработка в таком формате используется только внутри сканера и служит для уменьшения «шумов» преобразования. Итоговое изображение имеет стандартную для компьютерной техники 24-битную кодировку цвета.

Сканер для слайдов в большинстве случаев подключается к компьютеру через USB-интерфейс. Более дорогие модели могут подключаться через SCSI-2 и (FireWire). В этом случае достаточно часто в комплекте имеется плата с данным контроллером.

Сканер для пленки почти всегда имеет для улучшения изображения. Это и Digital ICE, которая позволяет убрать с изображения пылинки и царапины, не затрагивая основного изображения, и Digital GEM, которая позволяет устранить зернистость, и Digital ROC, позволяющая восстановить цвета на выцветших фотографиях и др. Достаточно часто все эти средства объединяют в одном пакете Digital ICE4 Advanced. Использование этих технологий значительно продлевает сканирование, но результат получается отличный. Для аналогичных преобразований в Фотошопе потребуется гораздо больше времени, а результат отнюдь не гарантирован.